已知橢圓E:
x2
4
+y2=1的左、右頂點分別為A、B,圓x2+y2=4上有一動點P,P在x軸上方,C(1,0),直線PA交橢圓E于點D,連結(jié)DC,PB.
(Ⅰ)若∠ADC=90°,求△ADC的面積S;
(Ⅱ)設(shè)直線PB,DC的斜率存在且分別為k1,k2,若k1=2k2,求λ的取值范圍.
考點:直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(Ⅰ)設(shè)D(x0,y0),由已知條件推導(dǎo)出(x0+2)(x0-1)+y02=0,再由D在橢圓上,求出
x0=
2
3
y0=
2
2
3
,由此能求出△ADC的面積S.
(Ⅱ)設(shè)P(x1,y1),D(x2,y2),由已知條件得x12+y12 =4,
x22
4
+y22=1
y1
x1+2
=
y2
x2+2
.由此利用已知條件推導(dǎo)出λ=4(1-
1
2-x2
),由此能求出λ的取值范圍.
解答: 解:(Ⅰ)設(shè)D(x0,y0),
∵橢圓E:
x2
4
+y2=1的左、右頂點分別為A(-2,0)、B(2,0),
C(1,0),∠ADC=90°,
AD
AC
=(x0+2,y0)•(x0-1,y0)=(x0+2)(x0-1)+y02=0,
聯(lián)立
(x0+2)(x0-1)+y02=0
x02+4y02=4
,
解得
x0=
2
3
y0=
2
2
3
x0=-2
y0=0
(舍),
S△ADC =
1
2
×3×
2
2
3
=
2
,
∴△ADC的面積S為
2

(Ⅱ)設(shè)P(x1,y1),D(x2,y2),∵P,Q分別在圓與橢圓上,
x12+y12 =4,
x22
4
+y22=1
,
∵A(-2,0),P(x1,y1),D(x2,y2)三點共線,
則有
y1
x1+2
=
y2
x2+2

k1=
y1 
x1-2
,k2=
y2
x2-1
,又k1=λk2,即
y1
x1-2
=λ•
y2
x2-1
,
y1
x1-2
y1
x1+2
=λ•
y2
x2-1
y2
x2 +2
,即
y12
x12-4
=λ•
y22
(x2-1)(x2+2)

y12=4-x12,y22=1-
x22 
4
,代入得-1=λ•
1-
x22
4
(x2-1)(x2+2)
,
λ=
4(1-x2)
2-x2
=4(1-
1
2-x2
),
∵x2∈(-2,2),∴λ<3,又∵λ≠0,
∴λ∈(-∞,0)∪(0,3).
點評:本題考查三角形面積的求法,考查實數(shù)的取值范圍的求法,解題時要認(rèn)真審題,注意等價轉(zhuǎn)化思想的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x∈R|-1≤x≤1},B={x∈R|x(x-3)≤0},則A∩B等于(  )
A、{x∈R|-1≤x≤3}
B、{x∈R|0≤x≤3}
C、{x∈R|-1≤x≤0}
D、{x∈R|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=
3
,AA1=2,E是BB1的中點,且CE交BC1于點P,點Q在線段BC上,CQ=2QB.
(1)證明:CC1∥平面A1PQ;
(2)若直線BC⊥平面A1PQ,求二面角A1-QE-P的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ln(x+1)
ax+1

(1)當(dāng)a=1,求函數(shù)y=f(x)的圖象在x=0處的切線方程;
(2)若函數(shù)f(x)在(0,1)上單調(diào)遞增,求實數(shù)a的取值范圍;
(3)已知x,y,z均為正實數(shù),且x+y+z=1,求證:
(3x-1)ln(x+1)
x-1
+
(3y-1)ln(y+1)
y-1
+
(3z-1)ln(z+1)
z-1
≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2為橢圓
x2
36
+
y2
16
=1
的兩個焦點,P是橢圓上一點,已知P,F(xiàn)1,F(xiàn)2是一個直角三角形的三個頂點,且|PF1|>|PF2|.
(1)若∠PF2F1是直角,求|PF1|-|PF2|的值;
(2)若∠F1PF2是直角,求
|
PF1
|
|
PF2
|
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1的離心率為
2
2
,且橢圓過點(1,1),過原點的直線l與橢圓C交于A、B兩點,橢圓上一點M滿足MA=MB.
(1)求橢圓C的方程;
(2)求
1
OA2
+
1
OB2
+
2
OM2
的值;
(3)是否存在定圓,使得直線l繞原點轉(zhuǎn)動時,AM恒與該定圓相切,若存在,求出圓的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(1+x)-x+
k
2
x2,(k>0,且k≠1).
(Ⅰ)當(dāng)k=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求f(x)的單調(diào)減區(qū)間;
(Ⅲ)當(dāng)k=0時,設(shè)f(x)在區(qū)間[0,n](n∈N*)上的最小值為bn,令an=ln(1+n)-bn,
求證:
a1
a2
+
a1a3
a2a4
+…+
a1a3a2n-1
a2a4..a2n
2an+1
-1,(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點F1(-1,0),F(xiàn)2(1,0)分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,點P(1,
2
2
)在橢圓上C上.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l1:y=kx+m,l2:y=kx-m,若l1、l2均與橢圓C相切,試探究在x軸上是否存在定點M,點M到l1,l2的距離之積恒為1?若存在,請求出點M坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的2個紅球和4個黑球.現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球.設(shè)ξ為取出的4個球中紅球的個數(shù),則ξ的數(shù)學(xué)期望Eξ=
 

查看答案和解析>>

同步練習(xí)冊答案