【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),且,若動(dòng)點(diǎn)
滿足,動(dòng)點(diǎn)的軌跡為.
(1)求的方程;
(2)過點(diǎn)作動(dòng)直線的平行線交軌跡于兩點(diǎn),則是否為定值?若是,求出該值;若不是,說明理由.
【答案】(1) (2)為定值,定值為1
【解析】
(1)利用平面向量坐標(biāo)的線性運(yùn)算化簡(jiǎn).結(jié)合列方程,化簡(jiǎn)后求得動(dòng)點(diǎn)的軌跡方程.
(2)設(shè)出直線的方程,聯(lián)立直線的方程和,寫出判別式和韋達(dá)定理,利用弦長(zhǎng)公式求得.求得直線的方程,與聯(lián)立,由此求得.由此計(jì)算出為定值.
(1)因?yàn)?/span>,即,
所以,,則,
又,所以,即,
所以動(dòng)點(diǎn)的軌跡方程為.
(2)易知直線不與軸重合,可設(shè)直線的方程為,由,
得,,
設(shè),則有,,
,
即,
由,可知直線的方程為,
由,得,
則,
故,綜上,為定值,且定值為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.
(2)從圓C外一點(diǎn)P(x1,y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(Ⅰ)若,解不等式;
(Ⅱ)當(dāng)時(shí),函數(shù)的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄AM與直線相切,且與圓外切,記動(dòng)圓M的圓心軌跡為曲線C.
(1)求曲線C的方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn),且(O為坐標(biāo)原點(diǎn)),證明直線l經(jīng)過定點(diǎn)H,并求出H點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五棱錐P-ABCDE中,△ABE是等邊三角形,四邊形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中點(diǎn),點(diǎn)P在底面的射影落在線段AG上.
(Ⅰ)求證:平面PBE⊥平面APG;
(Ⅱ)已知AB=2,BC=,側(cè)棱PA與底面ABCDE所成角為45°,S△PBE=,點(diǎn)M在側(cè)棱PC上,CM=2MP,求二面角M-AB-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的通項(xiàng)公式是,數(shù)列的通項(xiàng)公式是,集合,將集合中的元素按從小到大的順序排列構(gòu)成的數(shù)列記為,則數(shù)列的前45項(xiàng)和_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知棱,,兩兩垂直,長(zhǎng)度分別為1,2,2.若(),且向量與夾角的余弦值為.
(1)求的值;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為,線段上有兩個(gè)動(dòng)點(diǎn),且,則下列結(jié)論中正確的是( )
A.
B.平面
C.與平面所成角是
D.面積與的面積相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程的一個(gè)根為.
(1)求復(fù)數(shù)的模;
(2)若復(fù)數(shù)滿足,且為純虛數(shù),求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com