【題目】已知方程的一個(gè)根為

1)求復(fù)數(shù)的模;

2)若復(fù)數(shù)滿足,且為純虛數(shù),求

【答案】12

【解析】

1)方法一,由韋達(dá)定理得到a,b之間的關(guān)系式,求得a,b的值,進(jìn)而可求復(fù)數(shù)的模,方法二,將代入方程,即可求得a,b的值,進(jìn)而可求復(fù)數(shù)的模;(2)方法一,由條件可設(shè),再根據(jù)第一個(gè)條件求出k的值,可得結(jié)果;方法二,設(shè),根據(jù)已知條件得到關(guān)于的關(guān)系并求值。

解:(1)方法一:∵,,∴是該方程的另一個(gè)根,

由韋達(dá)定理得,

,

=

方法二:依題題意得

,

,,∴,

解得

2)方法一:設(shè),

由(1)可知,

,即,再由可得,

從而,即

故所求的

方法二:設(shè),

,①

再由,且為純虛數(shù),

可得,②

解①,②得,對應(yīng)的

,對應(yīng)的

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),且,若動(dòng)點(diǎn)

滿足,動(dòng)點(diǎn)的軌跡為.

1)求的方程;

2)過點(diǎn)作動(dòng)直線的平行線交軌跡兩點(diǎn),則是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的方程為,離心率為,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn).

(Ⅰ)求橢圓C的方程;

(Ⅱ)過動(dòng)點(diǎn)的直線交軸的負(fù)半軸于點(diǎn),交C于點(diǎn)(在第一象限),且是線段的中點(diǎn),過點(diǎn)作x軸的垂線交C于另一點(diǎn),延長線交C于點(diǎn).

(i)設(shè)直線的斜率分別為,,證明:

(ii)求直線的斜率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市食品藥品監(jiān)督管理局開展2019年春季校園餐飲安全檢查,對本市的8所中學(xué)食堂進(jìn)行了原料采購加工標(biāo)準(zhǔn)和衛(wèi)生標(biāo)準(zhǔn)的檢查和評分,其評分情況如下表所示:

中學(xué)編號

1

2

3

4

5

6

7

8

原料采購加工標(biāo)準(zhǔn)評分x

100

95

93

83

82

75

70

66

衛(wèi)生標(biāo)準(zhǔn)評分y

87

84

83

82

81

79

77

75

(1)已知x與y之間具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;(精確到0.1)

(2)現(xiàn)從8個(gè)被檢查的中學(xué)食堂中任意抽取兩個(gè)組成一組,若兩個(gè)中學(xué)食堂的原料采購加工標(biāo)準(zhǔn)和衛(wèi)生標(biāo)準(zhǔn)的評分均超過80分,則組成“對比標(biāo)兵食堂”,求該組被評為“對比標(biāo)兵食堂”的概率.

參考公式:;

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}為等差數(shù)列,a7a210,且a1,a6a21依次成等比數(shù)列.

1)求數(shù)列{an}的通項(xiàng)公式;

2)設(shè)bn,數(shù)列{bn}的前n項(xiàng)和為Sn,若Sn,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù),求的極值;

(2)證明:.

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,AB=2AD=2,∠DAB=60°,PA=PC=2,且平面ACP⊥平面ABCD

(Ⅰ)求證:CBPD;

(Ⅱ)求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).

(Ⅰ)求橢圓的離心率及左焦點(diǎn)的坐標(biāo);

(Ⅱ)求證:直線與橢圓相切;

(Ⅲ)判斷是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)P的直角坐標(biāo)為,點(diǎn)M的極坐標(biāo)為,若直線l過點(diǎn)P,且傾斜角為,圓CM為圓心,1為半徑.

1)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程.

2)設(shè)直線l與圓C相交于AB兩點(diǎn),求.

查看答案和解析>>

同步練習(xí)冊答案