已知各項均不為零的數(shù)列,其前n項和滿足;等差數(shù)列,且的等比中項
(1)求,
(2)記,求的前n項和.

(1);(2).

解析試題分析:(1)通過,然后兩式相減得出的遞推形式,,不要忘了驗(yàn)證是否滿足,從而求出 的通項公式,為等差數(shù)列,設(shè),按照這三項成等比數(shù)列,可以通過已知建立方程求出,然后求出通項;(2)分類討論思想,(1)問求出,的通項公式有兩個,所以也是兩個,其中,第一個通項公式按等比數(shù)列的前N項和求解,第二個按錯位相減法,列出,再列出q,,求出.運(yùn)算量比較大.平時要加強(qiáng)訓(xùn)練.此題為中檔題.
試題解析:(1)對于數(shù)列由題可知    ①
當(dāng)時,           ②
①-②得                1分
,
                       2分
是以1為首項,以為公比的等比數(shù)列
                                 3分
設(shè)等差數(shù)列的公比為,由題知   4分

,解得
當(dāng)時,;當(dāng)時,         6分
(2)當(dāng)時,
                      7分
當(dāng)時,
此時 ③
    ④    8分
③-④得

                       11分
綜上:時,;時,     12分
考點(diǎn):1.等差,等比數(shù)列的通項公式,性質(zhì);2.已知;3.錯位相減法求和.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校高一學(xué)生1000人,每周一次同時在兩個可容納600人的會議室,開設(shè)“音樂欣賞”與“美術(shù)鑒賞”的校本課程.要求每個學(xué)生都參加,要求第一次聽“音樂欣賞”課的人數(shù)為,其余的人聽“美術(shù)鑒賞”課;從第二次起,學(xué)生可從兩個課中自由選擇.據(jù)往屆經(jīng)驗(yàn),凡是這一次選擇“音樂欣賞”的學(xué)生,下一次會有20﹪改選“美術(shù)鑒賞”,而選“美術(shù)鑒賞”的學(xué)生,下次會有30﹪改選“音樂欣賞”,用分別表示在第次選“音樂欣賞”課的人數(shù)和選“美術(shù)鑒賞”課的人數(shù).
(1)若,分別求出第二次,第三次選“音樂欣賞”課的人數(shù);
(2)①證明數(shù)列是等比數(shù)列,并用表示
②若要求前十次參加“音樂欣賞”課的學(xué)生的總?cè)舜尾怀^5800,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足().
(1)求的值;
(2)求(用含的式子表示);
(3)(理)記數(shù)列的前項和為,求(用含的式子表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,.
(1)求證:是等比數(shù)列,并求的通項公式;
(2)數(shù)列滿足,數(shù)列的前n項和為,若不等式對一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列{bn}滿足bn+2=-bn+1bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求證數(shù)列{bnbn+1bn+2n}是等差數(shù)列;
(3)設(shè)數(shù)列{Tn}滿足:Tn+1Tnbn+1(n∈N*),且T1b1=-,若存在實(shí)數(shù)p,q,對任意n∈N*都有pT1T2T3+…+Tnq成立,試求qp的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知公差不為0的等差數(shù)列的前3項和=9,且成等比數(shù)列
(1)求數(shù)列的通項公式和前n項和;
(2)設(shè)為數(shù)列的前n項和,若對一切恒成立,求實(shí)數(shù)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

稱滿足以下兩個條件的有窮數(shù)列階“期待數(shù)列”:
;②.
(1)若等比數(shù)列階“期待數(shù)列”,求公比q及的通項公式;
(2)若一個等差數(shù)列既是階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;
(3)記n階“期待數(shù)列”的前k項和為
(i)求證:;
(ii)若存在使,試問數(shù)列能否為n階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項和為,若,點(diǎn)在直線上.
⑴求證:數(shù)列是等差數(shù)列;
⑵若數(shù)列滿足,求數(shù)列的前項和;
⑶設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列滿足, 
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令,求數(shù)列的前項和

查看答案和解析>>

同步練習(xí)冊答案