【題目】對于函數(shù),下列說法正確的是( )
A.在處取得極大值
B.有兩個不同的零點(diǎn)
C.
D.若在恒成立,則
【答案】ACD
【解析】
對選項(xiàng)A,求出函數(shù)的單調(diào)區(qū)間,再求出極大值即可判斷A正確,對選項(xiàng)B,利用函數(shù)的單調(diào)性和最值即可判斷B錯誤,對選項(xiàng)C,首先利用函數(shù)的單調(diào)性即可得到,再構(gòu)造函數(shù),利用的單調(diào)性即可得到,最后即可判斷C正確,對選項(xiàng)D,轉(zhuǎn)化為在在恒成立,構(gòu)造函數(shù),求出最大值即可判斷D正確.
對選項(xiàng)A,,.
令,.
,,為增函數(shù),
,,為減函數(shù).
所以處取得極大值,故A正確.
對選項(xiàng)B,當(dāng)時,,當(dāng)時,,
當(dāng)時,,又因?yàn)?/span>,
所以只有一個零點(diǎn),故B錯誤.
對選項(xiàng)C,因?yàn)?/span>在區(qū)間單調(diào)遞減,且,
所以.
,.
設(shè),.
令,.
所以時,,為減函數(shù).
又因?yàn)?/span>,所以,.
即,所以,故C正確.
對選項(xiàng)D,在在恒成立.
設(shè),,令,.
當(dāng),,為增函數(shù),
當(dāng),,為減函數(shù).
所以,即,故D正確.
故答案為:ACD
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,國資委.黨委高度重視扶貧開發(fā)工作,堅決貫徹落實(shí)中央扶貧工作重大決策部署,在各個貧困縣全力推進(jìn)定點(diǎn)扶貧各項(xiàng)工作,取得了積極成效,某貧困縣為了響應(yīng)國家精準(zhǔn)扶貧的號召,特地承包了一塊土地,已知土地的使用面積以及相應(yīng)的管理時間的關(guān)系如下表所示:
土地使用面積(單位:畝) | |||||
管理時間(單位:月) |
并調(diào)查了某村名村民參與管理的意愿,得到的部分?jǐn)?shù)據(jù)如下表所示:
愿意參與管理 | 不愿意參與管理 | |
男性村民 | ||
女性村民 |
求出相關(guān)系數(shù)的大小,并判斷管理時間與土地使用面積是否線性相關(guān)?
若以該村的村民的性別與參與管理意愿的情況估計貧困縣的情況,則從該貧困縣中任取人,記取到不愿意參與管理的男性村民的人數(shù)為,求的分布列及數(shù)學(xué)期望.
參考公式:,參考數(shù)據(jù):,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C以點(diǎn)為圓心,且被直線截得的弦長為.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若直線l經(jīng)過點(diǎn),且與圓C相切,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)若在上至少存在一個,滿足,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐 中,是正三角形,四邊形ABCD是矩形,且平面平面.
(1)若點(diǎn)E是PC的中點(diǎn),求證:平面BDE;
(2)若點(diǎn)F在線段PA上,且,當(dāng)三棱錐的體積為時,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合,選擇的兩個非空子集與,要使中最小數(shù)大于中最大的數(shù),則不同選擇方法有( )
A.50種B.49種C.48種D.40種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的非負(fù)半軸重合,若曲線的極坐標(biāo)系方程為
,直線的參數(shù)方程為為參數(shù)).
(1)求曲線的直角坐標(biāo)方程與直線的普通方程;
(2)設(shè)點(diǎn)直線與曲線交于兩點(diǎn), 求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com