已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)過(guò)點(diǎn)P(1,
2
2
),離心率e=
2
2
.求橢圓E的方程.
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由離心率公式得
c
a
=
2
2
,①又a2-b2=c2,②由條件得
1
a2
+
1
2b2
=1.③解方程組即可得到a,b的值,即可得到橢圓方程.
解答: 解:由離心率e=
2
2
,
可得
c
a
=
2
2
,①
又a2-b2=c2,②
由橢圓經(jīng)過(guò)點(diǎn)(1,
2
2
),
則得
1
a2
+
1
2b2
=1.③
由①②③即可得到:a=
2
,b=1.
則橢圓E的方程是
x2
2
+y2=1.
點(diǎn)評(píng):本題考查橢圓的方程和性質(zhì)及運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)滿足f(-1)=f(3)=0,在區(qū)間(-2,0)上是減函數(shù),在區(qū)間(2,+∞)是增函數(shù),函數(shù)F(x)=
xf(-x),x<0
-f(x),x>0
,則{x|F(x)>0}=( 。
A、{x|x<-3,或0<x<2,或x>3}
B、{x|x<-3,或-1<x<0,或0<x<1,或x>3}
C、{x|-3<x<-1,或1<x<3}
D、{x|x<-3,或0<x<1,或1<x<2,或2<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)從若干張撲克牌中隨機(jī)抽取一張,如果取到紅心(事件A)的概率是
1
4
,取到方片(事件B)的概率是
1
4
.求:取到紅色牌(事件C)的概率,取到黑色牌(事件D)的概率;
(2)同時(shí)擲兩個(gè)骰子,計(jì)算向上的點(diǎn)數(shù)之和是6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x4-4x3-4x2-1.
(1)設(shè)g(x)=bx2-1,若方程f(x)=g(x)的解集恰好有3個(gè)元素,求b的取值范圍;
(2)在(1)的條件下,是否存在實(shí)數(shù)對(duì)(m,n),使f(x-m)+g(x-n)為偶函數(shù)?如存在,求出m、n;如不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1號(hào)箱中有2個(gè)白球和4個(gè)紅球,2號(hào)箱中有5個(gè)白球和3個(gè)紅球,現(xiàn)隨機(jī)地從1號(hào)箱中取出一球放入2號(hào)箱,然后從2號(hào)箱隨機(jī)取出一球,問(wèn):
(Ⅰ)從1號(hào)箱中取出的是紅球的條件下,從2號(hào)箱取出紅球的概率是多少?
(Ⅱ)從2號(hào)箱取出紅球的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=3,a17=67,通項(xiàng)公式是關(guān)于n的一次函數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求a2011;
(3)2011是否為數(shù)列{an}中的項(xiàng)?若是,為第幾項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M(x,y)與兩定點(diǎn)M1,M2距離的比是一個(gè)正數(shù)m,求點(diǎn)M的軌跡方程.并說(shuō)明軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列推理是否正確?若不正確,指出錯(cuò)誤之處.
(1)求證:四邊形的內(nèi)角和等于360°.
證明:設(shè)四邊形ABCD是矩形,則它的四個(gè)角都是直角,有∠A+∠B+∠C+∠D=90°+90°+90°+90°=360°,所以四邊形的內(nèi)角和為360°.
(2)已知
2
3
都是無(wú)理數(shù),試證:
2
+
3
也是無(wú)理數(shù).
證明:設(shè)
2
3
都是無(wú)理數(shù),而無(wú)理數(shù)與無(wú)理數(shù)之和是無(wú)理數(shù),
所以
2
+
3
必是無(wú)理數(shù).
(3)已知實(shí)數(shù)m滿足不等式(2m+1)(m+2)<0,用反證法證明:關(guān)于x的方程x2+2x+5-m2=0無(wú)實(shí)根.
證明:假設(shè)方程x2+2x+5-m2=0有實(shí)根.由已知實(shí)數(shù)m滿足不等式(2m+1)(m+2)<0,解得-2<m<-
1
2
,又關(guān)于x的方程x2+2x+5-m2=0的判別式△=4-4(5-m2)=4(m2-4),∵-2<m<-
1
2
,∴
1
4
<m2<4,∴△<0,即關(guān)于x的方程x2+2x+5-m2=0無(wú)實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
16
+
y2
4
=1的弦AB的中點(diǎn)M的坐標(biāo)為(2,1),求直線AB的方程,并求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案