分析 (1)先求出函數(shù)的導(dǎo),從而求出函數(shù)的單調(diào)區(qū)間;
(2)問題等價于曲線y=$\frac{lnx+2}{x}$-1與直線y=m(m>0)公共點的個數(shù).構(gòu)造h(x)=$\frac{lnx+2}{x}$-1,通過討論m的范圍,得到交點的個數(shù);
(3)由(1)結(jié)合條件可得an+1+1≤2(an+1),對n取值,作乘即可得證.
解答 解:(1)求導(dǎo)f′(x)=$\frac{1-x}{x}$,由f′(x)=0得x=1.
當(dāng)x∈(0,1)時,f′(x)>0;當(dāng)x∈(1,+∞)時,f′(x)<0.
所以函數(shù)y=f(x)在(0,1)上是增函數(shù),在(1,+∞)上是減函數(shù).
(2)當(dāng)x>0時,函數(shù)y=f(x)的圖象與直線g(x)=mx-1(m>0)公共點的個數(shù)
等價于曲線y=$\frac{lnx+2}{x}$-1與直線y=m(m>0)公共點的個數(shù).
令h(x)=$\frac{lnx+2}{x}$-1,則h′(x)=-$\frac{1+lnx}{{x}^{2}}$,
所以h′($\frac{1}{e}$)=0.
當(dāng)x∈(0,$\frac{1}{e}$)時,h′(x)>0,h(x)在(0,$\frac{1}{e}$)上是增函數(shù);
當(dāng)x∈($\frac{1}{e}$,+∞)時,h′(x)<0,h(x)在($\frac{1}{e}$,+∞)上是減函數(shù).
所以,h(x)在(0,+∞)上的最大值為h($\frac{1}{e}$)=e-1>0,
且h($\frac{1}{{e}^{2}}$)=-1<0,h(e2)=$\frac{4}{{e}^{2}}$-1<0,
如圖:于是
①當(dāng)0<m<e-1時,函數(shù)y=f(x)的圖象與直線g(x)=mx-1
(m>0)有2個公共點;
②當(dāng)m=e-1時,函數(shù)y=f(x)的圖象與直線g(x)=mx-1(m>0)
有1個公共點;
③當(dāng)m>e-1時,函數(shù)y=f(x)的圖象與直線g(x)=mx-1(m>0)
有0個公共點.
(3)證明:由題意,正項數(shù)列{an}滿足:a1=1,an+1=lnan+an+2,
由(1)知:f(x)=lnx-x+1≤f(1)=0,即有不等式lnx≤x-1(x>0)
由已知條件知an>0,an+1=lnan+an+2≤an-1+an+2=2an+1,
故an+1+1≤2(an+1),
所以當(dāng)n≥2時,0<$\frac{{a}_{2}+1}{{a}_{1}+1}$≤2,0<$\frac{{a}_{3}+1}{{a}_{2}+1}$≤2,…,0<$\frac{{a}_{n-1}+1}{{a}_{n-2}+1}$≤2,0<$\frac{{a}_{n}+1}{{a}_{n-1}+1}$≤2,
以上格式相乘得:0<$\frac{{a}_{n}+1}{{a}_{1}+1}$≤2n-1,又a1=1,故an+1≤2n,
即有$\frac{1}{1+{a}_{n}}$≥($\frac{1}{2}$)n.
則有$\frac{1}{1+{a}_{1}}$+$\frac{1}{1+{a}_{2}}$+…+$\frac{1}{1+{a}_{n}}$≥$\frac{1}{2}$.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,不等式的證明,本題有一定的難度.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
患病 | 未患病 | 總計 | |
服用藥 | 6 | a1 | 21 |
未服用藥 | a2 | 10 | a4 |
總計 | 20 | a3 | 45 |
p(x2≥k) | 0.05 | 0.01 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com