【題目】2019年北京市百項(xiàng)疏堵工程基本完成.有關(guān)部門為了解疏堵工程完成前后早高峰時(shí)段公交車運(yùn)行情況,調(diào)取某路公交車早高峰時(shí)段全程所用時(shí)間(單位:分鐘)的數(shù)據(jù),從疏堵工程完成前的數(shù)據(jù)中隨機(jī)抽取5個(gè)數(shù)據(jù),記為A組,從疏堵工程完成后的數(shù)據(jù)中隨機(jī)抽取5個(gè)數(shù)據(jù),記為B組.
A組:128,100,151,125,120
B組:100,102,96,101,
己知B組數(shù)據(jù)的中位數(shù)為100,且從中隨機(jī)抽取一個(gè)數(shù)不小于100的概率是.
(1)求a的值;
(2)該路公交車全程所用時(shí)間不超過(guò)100分鐘,稱為“正點(diǎn)運(yùn)行”從A,B兩組數(shù)據(jù)中各隨機(jī)抽取一個(gè)數(shù)據(jù),記兩次運(yùn)行中正點(diǎn)運(yùn)行的次數(shù)為X,求X的分布列及期望;
(3)試比較A,B兩組數(shù)據(jù)方差的大。ú灰笥(jì)算),并說(shuō)明其實(shí)際意義.
【答案】(1);(2)分布列詳見(jiàn)解答,期望為;(3)詳見(jiàn)解答.
【解析】
(1)由已知中位數(shù)100,確定的范圍,再求出不小于100的數(shù)的個(gè)數(shù),即可求出;
(2)隨機(jī)變量X可能值為,根據(jù)每組車“正點(diǎn)運(yùn)行”概率求出X可能值為的概率,即可求出隨機(jī)變量的分布列,進(jìn)而求出期望;
(3)利用方差表示數(shù)據(jù)集中的程度,說(shuō)明疏堵工程完成后公交車的穩(wěn)定程度.
(1)B組數(shù)據(jù)的中位數(shù)為100,根據(jù)B組的數(shù)據(jù),
從B組中隨機(jī)抽取一個(gè)數(shù)不小于100的概率是,
B組中不小于100的有4個(gè)數(shù),所以;
(2)從A,B兩組數(shù)據(jù)中各隨機(jī)抽取一個(gè)數(shù)據(jù),
“正點(diǎn)運(yùn)行”概率分別為,
從A,B兩組數(shù)據(jù)中各隨機(jī)抽取一個(gè)數(shù)據(jù),
記兩次運(yùn)行中正點(diǎn)運(yùn)行的次數(shù)為X,
X可能值為,,
,
,
X的分布列為:
X | 0 | 1 | 2 |
,
X期望為;
(3)對(duì)比兩組數(shù)據(jù),組數(shù)據(jù)方差更小,說(shuō)明疏堵工程完成后公交車運(yùn)行時(shí)間更為穩(wěn)定.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為,在以O為極點(diǎn),x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.
(1)設(shè)曲線C與直線l的交點(diǎn)為A、B,求弦AB的中點(diǎn)P的直角坐標(biāo);
(2)動(dòng)點(diǎn)Q在曲線C上,在(1)的條件下,試求△OPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,并解答.
已知等差數(shù)列的公差為,等差數(shù)列的公差為.設(shè)分別是數(shù)列的前項(xiàng)和,且, ,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓與拋物線有共同的焦點(diǎn),且兩曲線的公共點(diǎn)到的距離是它到直線 (點(diǎn)在此直線右側(cè))的距離的一半.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),直線過(guò)點(diǎn)且與橢圓交于兩點(diǎn),以為鄰邊作平行四邊形.是否存在直線,使點(diǎn)落在橢圓或拋物線上?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=f(x),x∈[1,+∞),數(shù)列{an}滿足,
①函數(shù)f(x)是增函數(shù);
②數(shù)列{an}是遞增數(shù)列.
寫出一個(gè)滿足①的函數(shù)f(x)的解析式______.
寫出一個(gè)滿足②但不滿足①的函數(shù)f(x)的解析式______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的兩個(gè)零點(diǎn)之差的絕對(duì)值的最小值為,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,則下列說(shuō)法正確的是( )
①函數(shù)的最小正周期為;②函數(shù)的圖象關(guān)于點(diǎn)()對(duì)稱;
③函數(shù)的圖象關(guān)于直線對(duì)稱;④函數(shù)在上單調(diào)遞增.
A.①②③④B.①②C.②③④D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:的焦點(diǎn)為F,Q是拋物線上的一點(diǎn),.
(Ⅰ)求拋物線C的方程;
(Ⅱ)過(guò)點(diǎn)作直線l與拋物線C交于M,N兩點(diǎn),在x軸上是否存在一點(diǎn)A,使得x軸平分?若存在,求出點(diǎn)A的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某連鎖餐廳新店開(kāi)業(yè),打算舉辦一次食品交易會(huì),招待新老顧客試吃.項(xiàng)目經(jīng)理通過(guò)查閱最近次食品交易會(huì)參會(huì)人數(shù)(萬(wàn)人)與餐廳所用原材料數(shù)量(袋),得到如下統(tǒng)計(jì)表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會(huì)人數(shù)(萬(wàn)人) | |||||
原材料(袋) |
(1)根據(jù)所給組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)已知購(gòu)買原材料的費(fèi)用(元)與數(shù)量(袋)的關(guān)系為,投入使用的每袋原材料相應(yīng)的銷售收入為元,多余的原材料只能無(wú)償返還,據(jù)悉本次交易大會(huì)大約有萬(wàn)人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測(cè)餐廳應(yīng)購(gòu)買多少袋原材料,才能獲得最大利潤(rùn),最大利潤(rùn)是多少?(注:利潤(rùn)銷售收入原材料費(fèi)用).
參考公式:,.
參考數(shù)據(jù):,,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com