精英家教網 > 高中數學 > 題目詳情

【題目】某連鎖餐廳新店開業(yè),打算舉辦一次食品交易會,招待新老顧客試吃.項目經理通過查閱最近次食品交易會參會人數(萬人)與餐廳所用原材料數量(袋),得到如下統(tǒng)計表:

第一次

第二次

第三次

第四次

第五次

參會人數(萬人)

原材料(袋)

1)根據所給組數據,求出關于的線性回歸方程

2)已知購買原材料的費用(元)與數量(袋)的關系為,投入使用的每袋原材料相應的銷售收入為元,多余的原材料只能無償返還,據悉本次交易大會大約有萬人參加,根據(1)中求出的線性回歸方程,預測餐廳應購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入原材料費用).

參考公式:.

參考數據:,,.

【答案】1;(2)餐廳應該購買袋原材料,才能使利潤獲得最大,最大利潤為.

【解析】

1)計算出的值,利用題中的數據結合最小二乘法公式求出的值,即可得出關于的線性回歸方程;

2)由(1)中求出的線性回歸方程計算的值,再根據題意計算對應的利潤值,比較大小即可.

1)由表格中的數據可得,,

,,

因此,關于的線性回歸方程為

2)由(1)中求出的線性回歸方程知,當時,,即預計需要原材料.

,當時,利潤.

時,;

時,;

時,.

綜上所述,餐廳應該購買袋原材料,才能使利潤獲得最大,最大利潤為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】2019年北京市百項疏堵工程基本完成.有關部門為了解疏堵工程完成前后早高峰時段公交車運行情況,調取某路公交車早高峰時段全程所用時間(單位:分鐘)的數據,從疏堵工程完成前的數據中隨機抽取5個數據,記為A組,從疏堵工程完成后的數據中隨機抽取5個數據,記為B.

A組:128,100,151125,120

B組:100,10296,101

己知B組數據的中位數為100,且從中隨機抽取一個數不小于100的概率是.

1)求a的值;

2)該路公交車全程所用時間不超過100分鐘,稱為“正點運行”從AB兩組數據中各隨機抽取一個數據,記兩次運行中正點運行的次數為X,求X的分布列及期望;

3)試比較AB兩組數據方差的大。ú灰笥嬎悖,并說明其實際意義.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校高一、高二年級的全體學生都參加了體質健康測試,測試成績滿分為分,規(guī)定測試成績在之間為體質優(yōu)秀,在之間為體質良好,在之間為體質合格,在之間為體質不合格”.現從這兩個年級中各隨機抽取名學生,測試成績如下:

學生編號

1

2

3

4

5

6

7

高一年級

60

85

80

65

90

91

75

高二年級

79

85

91

75

60

其中是正整數.

1)若該校高一年級有學生,試估計高一年級體質優(yōu)秀的學生人數;

2)若從高一年級抽取的名學生中隨機抽取人,記為抽取的人中為體質良好的學生人數,求的分布列及數學期望;

3)設兩個年級被抽取學生的測試成績的平均數相等,當高二年級被抽取學生的測試成績的方差最小時,寫出的值.(只需寫出結論)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】陽馬和鱉臑(bienao)是《九章算術·商功》里對兩種錐體的稱謂.如圖所示,取一個長方體,按下圖斜割一分為二,得兩個模一樣的三棱柱,稱為塹堵(如圖).再沿其中一個塹堵的一個頂點與相對的棱剖開,得四棱錐和三棱錐各一個,有一棱與底面垂直的四棱錐稱為陽馬(四棱錐)余下三棱錐稱為鱉臑(三棱錐)若將某長方體沿上述切割方法得到一個陽馬一個鱉臑,且該陽馬的正視圖和鱉臑的側視圖如圖所示,則可求出該陽馬和鱉臑的表面積之和為(

A.B.

C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,國家相關政策大力鼓勵創(chuàng)新創(chuàng)業(yè)種植業(yè)戶小李便是受益者之一,自從2017年畢業(yè)以來,其通過自主創(chuàng)業(yè)而種植的某種農產品廣受市場青睞,他的種植基地也相應地新增加了一個平時小李便帶著部分員工往返于新舊基地之間進行科學管理和經驗交流,新舊基地之間開車單程所需時間為,由于不同時間段車流量的影響,現對50名員工往返新舊基地之間的用時情況進行統(tǒng)計,結果如下:

(分鐘)

30

35

40

45

50

頻數(人)

10

20

10

5

5

1)若有50名員工參與調查,現從單程時間在35分鐘,40分鐘,45分鐘的人員中按分層抽樣的方法抽取7人,再從這7人中隨機抽取3人進行座談,用表示抽取的3人中時間在40分鐘的人數,求的分布列和數學期望;

2)某天,小李需要從舊基地駕車趕往新基地召開一個20分鐘的緊急會議,結束后立即返回舊基地.(以50名員工往返新舊基地之間的用時的頻率作為用時發(fā)生的概率)

①求小李從離開舊基地到返回舊基地共用時間不超過110分鐘的概率;

②若用隨機抽樣的方法從舊基地抽取8名骨干員工陪同小李前往新基地參加此次會議,其中有名員工從離開舊基地到返回舊基地共用時間不超過110分鐘,求隨機變量的方差.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方體的棱長為4,點E、F為棱CD、的中點.

1)求證:平面;

2)求直線與平面ACF所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】長沙市為了支援邊遠山區(qū)的教育事業(yè),組織了一支由13名教師組成的隊伍下鄉(xiāng)支教,記者采訪隊長時詢問這個團隊的構成情況,隊長回答:“(1)有中學高級教師;(2)中學教師不多于小學教師;(3)小學高級教師少于中學中級教師;(4)小學中級教師少于小學高級教師;(5)支教隊伍的職稱只有小學中級、小學高級、中學中級、中學高級;(6)無論是否把我計算在內,以上條件都成立.由隊長的敘述可以推測出他的學段及職稱分別是____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解某中學學生對《中華人民共和國交通安全法》的了解情況,調查部門在該校進行了一次問卷調查(共12道題),從該校學生中隨機抽取40人,統(tǒng)計了每人答對的題數,將統(tǒng)計結果分成,,,六組,得到如下頻率分布直方圖.

1)若答對一題得10分,未答對不得分,估計這40人的成績的平均分(同一組中的數據用該組區(qū)間的中點值作代表);

2)若從答對題數在內的學生中隨機抽取2人,求恰有1人答對題數在內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為實現有效利用扶貧資金,增加貧困村民的收入,扶貧工作組結合某貧困村水質優(yōu)良的特點,決定利用扶貧資金從外地購買甲、乙、丙三種魚苗在魚塘中進行養(yǎng)殖試驗,試驗后選擇其中一種進行大面積養(yǎng)殖,已知魚苗甲的自然成活率為0.8.魚苗乙,丙的自然成活率均為0.9,且甲、乙、丙三種魚苗是否成活相互獨立.

1)試驗時從甲、乙,丙三種魚苗中各取一尾,記自然成活的尾數為,求的分布列和數學期望;

2)試驗后發(fā)現乙種魚苗較好,扶貧工作組決定購買尾乙種魚苗進行大面積養(yǎng)殖,為提高魚苗的成活率,工作組采取增氧措施,該措施實施對能夠自然成活的魚苗不產生影響.使不能自然成活的魚苗的成活率提高了50%.若每尾乙種魚苗最終成活后可獲利10元,不成活則虧損2元,且扶貧工作組的扶貧目標是獲利不低于37.6萬元,問需至少購買多少尾乙種魚苗?

查看答案和解析>>

同步練習冊答案