一火車鍋爐每小時煤的消耗費用與火車行駛速度的立方成正比,已知當(dāng)速度為20 km/h時,每小時消耗的煤價值40元,其他費用每小時需400元,火車的最高速度為100 km/h,火車以何速度行駛才能使從甲城開往乙城的總費用最少?

速度為20 km/h時,總費用最少

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知.
(1)求函數(shù)的最大值;
(2)設(shè),證明:有最大值,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=x2-(a-2)x-alnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)有兩個零點,求滿足條件的最小正整數(shù)a的值;
(3)若方程f(x)=c有兩個不相等的實數(shù)根x1、x2,求證:f′>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=lnx-ax(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a>0時,求函數(shù)f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)=xax2bln x,曲線yf(x)過點
P(1,0),且在P點處的切線的斜率為2.
①求ab的值;
②證明:f(x)≤2x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ax--3ln x,其中a為常數(shù).
(1)當(dāng)函數(shù)f(x)的圖象在點處的切線的斜率為1時,求函數(shù)f(x)在上的最小值;
(2)若函數(shù)f(x)在區(qū)間(0,+∞)上既有極大值又有極小值,求a的取值范圍;
(3)在(1)的條件下,過點P(1,-4)作函數(shù)F(x)=x2[f(x)+3lnx-3]圖象的切線,試問這樣的切線有幾條?并求出這些切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)=xh(x)=,設(shè)F(x)=f(x)-h(x),求F(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一矩形鐵皮的長為8 cm,寬為5 cm,在四個角上截去四個相同的小正方形,制成一個無蓋的小盒子,問小正方形的邊長為多少時,盒子容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)當(dāng)時,求曲線在點處的切線方程;
(2)若在區(qū)間上是減函數(shù),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案