【題目】甲、乙兩人進(jìn)行某項對抗性游戲,采用“七局四勝”制,即先贏四局者為勝,若甲、乙兩人水平相當(dāng),且已知甲先贏了前兩局.

求乙取勝的概率;

記比賽局?jǐn)?shù)為X,求X的分布列及數(shù)學(xué)期望

【答案】(I);(II)詳見解析

【解析】

乙取勝有兩種情況一是乙連勝四局,二是第三局到第六局中乙勝三局,第七局乙勝,由互斥事件的概率公式與根據(jù)獨立事件概率公式能求出乙勝概率;由題意得,5,6,7,結(jié)合組合知識,利用獨立事件概率公式及互斥事件的概率公式求出各隨機(jī)變量對應(yīng)的概率,從而可得分布列,進(jìn)而利用期望公式可得的數(shù)學(xué)期望.

乙取勝有兩種情況

一是乙連勝四局,其概率,

二是第三局到第六局中乙勝三局,第七局乙勝,

其概率,

乙勝概率為

由題意得,5,6,7,

,

,

所以的分布列為

4

5

6

7

P

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩縣城A和B相距20km,現(xiàn)計劃在兩縣城外以AB為直徑的半圓弧上選擇一點C建造垃圾處理廠,其對城市的影響度與所選地點到城市的距離有關(guān),對城A和城B的總影響度為城A與城B的影響度之和,記C點到城A的距離為xkm,建在C處的垃圾處理廠對城A和城B的總影響度為y,統(tǒng)計調(diào)查表明:垃圾處理廠對城A的影響度與所選地點到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點到城B的距離的平方成反比,比例系數(shù)為k,當(dāng)垃圾處理廠建在的 中點時,對城A和城B的總影響度為0.065.
(1)將y表示成x的函數(shù);
(2)討論(1)中函數(shù)的單調(diào)性,并判斷弧 上是否存在一點,使建在此處的垃圾處理廠對城A和城B的總影響度最。咳舸嬖,求出該點到城A的距離;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前,學(xué)案導(dǎo)學(xué)模式已經(jīng)成為教學(xué)中不可或缺的一部分,為了了解學(xué)案的合理使用是否對學(xué)生的期末復(fù)習(xí)有著重要的影響,我校隨機(jī)抽取100名學(xué)生,對學(xué)習(xí)成績和學(xué)案使用程度進(jìn)行了調(diào)查,統(tǒng)計數(shù)據(jù)如表所示:

善于使用學(xué)案

不善于使用學(xué)案

總計

學(xué)習(xí)成績優(yōu)秀

40

學(xué)習(xí)成績一般

30

總計

100

參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

已知隨機(jī)抽查這100名學(xué)生中的一名學(xué)生,抽到善于使用學(xué)案的學(xué)生概率是0.6.
(1)請將上表補(bǔ)充完整(不用寫計算過程);
(2)試運用獨立性檢驗的思想方法分析:有多大的把握認(rèn)為學(xué)生的學(xué)習(xí)成績與對待學(xué)案的使用態(tài)度有關(guān)?
(3)利用分層抽樣的方法從善于使用學(xué)案的同學(xué)中隨機(jī)抽取6人,從這6人中抽出3人繼續(xù)調(diào)查,設(shè)抽出學(xué)習(xí)成績優(yōu)秀的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若方程|x2﹣2x﹣1|﹣t=0有四個不同的實數(shù)根x1、x2、x3、x4,且x1<x2<x3<x4 , 則2(x4﹣x1)+(x3﹣x2)的取值范圍是(
A.(8,6
B.(6 ,4
C.[8,4 ]
D.(8,4 ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某水泥廠銷售工作人員根據(jù)以往該廠的銷售情況,繪制了該廠日銷售量的頻率分布直方圖,如圖所示:將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨立.
(1)求未來3天內(nèi),連續(xù)2天日銷售量不低于8噸,另一天日銷售量低于8噸的概率;
(2)用X表示未來3天內(nèi)日銷售量不低于8噸的天數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線C:y2=4x的焦點F作直線l交拋物線C于A,B,若|AF|=3|BF|,則l的斜率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,圓的方程為,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為為參數(shù))

(1)求圓的直角坐標(biāo)方程和直線的普通方程;

(2)若直線與圓相切,求實數(shù)的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|cosx|sinx,給出下列五個說法:
①f( π)=﹣ ;
②若|f(x1)|=|f(x2)|,則x1=x2+kπ(k∈Z);
③f(x)在區(qū)間[﹣ ]上單調(diào)遞增;
④函數(shù)f(x)的周期為π.
⑤f(x)的圖象關(guān)于點( ,0)成中心對稱.
其中正確說法的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù))M是C1上的動點,P點滿足 =2 ,P點的軌跡為曲線C2
(1)求C2的方程;
(2)在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,射線θ= 與C1的異于極點的交點為A,與C2的異于極點的交點為B,求|AB|.

查看答案和解析>>

同步練習(xí)冊答案