一個均勻的正四面體的四個面上分別涂有1,2,3,4四個數(shù)字,現(xiàn)隨機投擲兩次,正四面體面朝下的數(shù)字分別為,記
(1)分別求出取得最大值和最小值時的概率; (2)求的分布列及數(shù)學期望.

解:(1)當時,可取得最大值,; 當時,可取得最小值,
(2)所以ξ的分布列為:

ξ
0
1
2
4
5
8
P






 

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
某高校設計了一個實驗學科的實驗考查方案:考生從6道備選題中一次性隨機抽取3題,按照題目要求獨立完成全部實驗操作。規(guī)定:至少正確完成其中2題的便可提交通過。已知6道備選題中考生甲有4道題能正確完成,2道題不能完成;考生乙每題正確完成的概率都是,且每題正確完成與否互不影響。
(Ⅰ)分別寫出甲、乙兩考生正確完成題數(shù)的概率分布列,并計算數(shù)學期望;
(Ⅱ)試從兩位考生正確完成題數(shù)的數(shù)學期望及至少正確完成2題的概率分析比較兩位考生的實驗操作能力.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)本著健康、低碳的生活理念,租自行車騎游的人越來越多。某自行車租車點的收費標準是每車每次租不超過兩小時免費,超過兩小時的部分每小時收2元(不足1小時的部分按1小時計算)。有人獨立來該租車點租車騎游。各租一車一次。設甲、乙不超過兩小時還車的概率分別為;兩小時以上且不超過三小時還車的概率分別為;兩人租車時間都不會超過四小時。
(Ⅰ)求甲、乙兩人所付租車費用相同的概率;
(Ⅱ)求甲、乙兩人所付的租車費用之和為隨機變量,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲和乙參加智力答題活動,活動規(guī)則:①答題過程中,若答對則繼續(xù)答題;若答錯則停止答題;②每人最多答3個題;③答對第一題得10分,第二題得20分,第三題得30分,答錯得0分。已知甲答對每個題的概率為,乙答對每個題的概率為。
(1)求甲恰好得30分的概率;
(2)設乙的得分為,求的分布列和數(shù)學期望;
(3)求甲恰好比乙多30分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校從參加高一年級期末考試的學生中抽出40名學生,將其成績(均為整數(shù))分成六段,后畫出如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求第四小組的頻率,并補全頻率分布直方圖;
(2)估計這次考試的及格率(60分及以上為及格)和平均分;
(3)從成績是40~50分及90~100分的學生中選兩人,記他們的成績?yōu)閤,y,求滿足“”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某人一次同時拋擲兩枚均勻骰子(它們的六個面分別標有點數(shù)1、2、3、4、5、6)
求:(1)兩枚骰子點數(shù)相同的概率;
(2)兩枚骰子點數(shù)和為5的倍數(shù)的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某飲料公司對一名員工進行測試以便確定其考評級別,公司準備了
兩種不同的飲料共5杯,其顏色完全相同,并且其中3杯為A飲料,另外2杯為
B飲料,公司要求此員工一一品嘗后,從5杯飲料中選出3杯A飲料.若該員工
3杯都選對,則評為優(yōu)秀;若3杯選對2杯,則評為良好;否則評為合格.假設
此人對A和B兩種飲料沒有鑒別能力.
(1)求此人被評為優(yōu)秀的概率;
(2)求此人被評為良好及以上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校高一年級共有320人,為調查高一年級學生每天晚自習自主支配學習時間(指除了完成老師布置的作業(yè)后學生根據(jù)自己的需要進行學習的時間)情況,學校采用隨機抽樣的方法從高一學生中抽取了n名學生進行問卷調查.根據(jù)問卷得到了這n名學生每天晚自習自主支配學習時間的數(shù)據(jù)(單位:分鐘),按照以下區(qū)間分為七組:①[0,10),②[10,20),③[20,30),④[30,40),⑤[40,50),⑥[50,60),⑦[60,70),得到頻率分布直方圖如圖.已知抽取的學生中每天晚自習自主支配學習時間低于20分鐘的人數(shù)是4人.
(1)求n的值;
(2)若高一全體學生平均每天晚自習自主支配學習時間少于45分鐘,則學校需要減少作業(yè)量.根據(jù)以上抽樣調查數(shù)據(jù),學校是否需要減少作業(yè)量?
(注:統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表)
(3)問卷調查完成后,學校從第3組和第4組學生中利用分層抽樣的方法抽取7名學生進行座談,了解各學科的作業(yè)布置情況,并從這7人中隨機抽取兩名學生聘為學情調查聯(lián)系人。求第3組中至少有1名學生被聘為學情調查聯(lián)系人的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
有4張面值相同的債券,其中有2張中獎債券.
(1)有放回地從債券中任取2次,每次取出1張,計算取出的2張都是中獎債券的概率.
(2)無放回地從債券中任取2次,每次取出1張,計算取出的2張中至少有1張是中獎債券的概率.

查看答案和解析>>

同步練習冊答案