【題目】如圖,在三棱錐中,底面是邊長為4的正三角形,,底面,點(diǎn)分別為,的中點(diǎn).
(1)求證:平面平面;
(2)在線段上是否存在點(diǎn),使得直線與平面所成的角的正弦值為?若存在,確定點(diǎn)的位置;若不存在,請說明理由.
【答案】(1)見解析(2)見解析
【解析】
(1)先證明,,可得平面從而平面平面;
(2)由題意可知兩兩垂直,分別以方向?yàn)?/span>軸建立坐標(biāo)系,求出平面的法向量及,代入公式可得未知量的方程,解之即可.
(1)證明:∵,為的中點(diǎn),
∴
又平面,平面,∴
∵
∴平面
∵平面
∴平面平面
(2)解:如圖,由(1)知,,,點(diǎn),分別為的中點(diǎn),
∴,∴,,又,
∴兩兩垂直,分別以方向?yàn)?/span>軸建立坐標(biāo)系.
則,,,,
設(shè),
所以
,,設(shè)平面的法向量,則
,,令,則,,
∴
由已知 或(舍去)
故
故線段上存在點(diǎn),使得直線與平面所成的角的正弦值為,
此時(shí)為線段的中點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是邊長為2的菱形,,平面,點(diǎn)是棱的中點(diǎn).
(1)證明:平面;
(2)當(dāng)時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合S={1,2,3,4,5,6},一一映射f:S→S滿足條件:對于任意的x∈S,有f(f(f(x)))=x。則滿足條件的映射f的個數(shù)是( )。
A. 81 B. 80 C. 40 D. 27
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)需要設(shè)計(jì)一個倉庫,它由上下兩部分組成,上部的形狀是正四棱錐P—A1B1C1D1,下部的形狀是正四棱柱ABCD—A1B1C1D1(如圖所示),并要求正四棱柱的高O1O是正四棱錐的高PO1的4倍.
(1)若AB=6 m,PO1=2 m,則倉庫的容積是多少?
(2)若正四棱錐的側(cè)棱長為6 m,則當(dāng)PO1為多少時(shí),倉庫的容積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的個數(shù)是( )
①由五個面圍成的多面體只能是三棱柱;
②由若干個平面多邊形所圍成的幾何體是多面體;
③僅有一組對面平行的五面體是棱臺;
④有一面是多邊形,其余各面是三角形的幾何體是棱錐.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B,C,D為平面內(nèi)的四點(diǎn),且A(1,3),B(2,–2),C(4,1).
(1)若,求D點(diǎn)的坐標(biāo);
(2)設(shè)向量,,若k–與+3平行,求實(shí)數(shù) 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓臺的上、下底面半徑分別為5cm,10cm,母線長,從圓臺母線的中點(diǎn)拉一條繩子繞圓臺側(cè)面轉(zhuǎn)到點(diǎn).求:
(1)繩子的最短長度;
(2)在繩子最短時(shí),求上底面圓周上的點(diǎn)到繩子的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給圖中A,B,C,D,E,F六個區(qū)域進(jìn)行染色,每個區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有4種顏色可供選擇,則共有___種不同的染色方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】西光廠眼鏡車間接到一批任務(wù),需要加工6000個型零件和2000個型零件.這個車間有214名工人,他們每一個人加工5個型零件的時(shí)間可以加工3個型零件.將這些工人分成兩組,兩組同時(shí)工作,每組加工一種型號的零件,為了在最短的時(shí)間內(nèi)完成這批任務(wù),應(yīng)怎樣分組?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com