【題目】下列說法正確的是( )
①設某大學的女生體重與身高具有線性相關關系,根據(jù)一組樣本數(shù)據(jù),用最小二乘法建立的線性回歸方程為 ,則若該大學某女生身高增加,則其體重約增加;
②關于的方程的兩根可分別作為橢圓和雙曲線的離心率;
③過定圓上一定點作圓的動弦,為原點,若,則動點的軌跡為橢圓;
④已知是橢圓的左焦點,設動點在橢圓上,若直線的斜率大于,則直線(為原點)的斜率的取值范圍是.
A. ①②③ B. ①③④ C. ①②④ D. ②③④
【答案】C
【解析】
利用線性回歸方程系數(shù)的幾何意義,圓錐曲線離心率的范圍,橢圓的性質(zhì),逐一判斷即可.
①設某大學的女生體重y(kg)與身高x(cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的線性回歸方程為0.85x﹣85.71,則若該大學某女生身高增加1cm,則其體重約增加0.85kg,正確;
②關于x的方程x2﹣mx+1=0(m>2)的兩根之和大于2,兩根之積等于1,故兩根中,一根大于1,一根大于0小于1,故可分別作為橢圓和雙曲線的離心率.正確;
③設定圓C的方程為(x﹣a)2+(x﹣b)2=r2,其上定點A(x0,y0),設B(a+rcosθ,b+rsinθ),P(x,y),
由()得,消掉參數(shù)θ,得:(2x﹣x0﹣a)2+(2y﹣y0﹣b)2=r2,即動點P的軌跡為圓, ∴故③不正確;
④由,得a2=4,b2=3,∴.則F(﹣1,0),
如圖:過F作垂直于x軸的直線,交橢圓于A(x軸上方),則xA=﹣1,
代入橢圓方程可得.
當P為橢圓上頂點時,P(0,),此時,又,
∴當直線FP的斜率大于時,直線OP的斜率的取值范圍是.
當P為橢圓下頂點時,P(0,),
∴當直線FP的斜率大于時,直線OP的斜率的取值范圍是(,),
綜上,直線OP(O為原點)的斜率的取值范圍是∪(,).
故選:C
科目:高中數(shù)學 來源: 題型:
【題目】了解某市今年初二年級男生的身體素質(zhì)狀況,從該市初二年級男生中抽取了一部分學生進行“擲實心球”的項目測試.成績低于6米為不合格,成績在6至8米(含6米不含8米)的為及格,成績在8米至12米(含8米和12米,假定該市初二學生擲實心球均不超過12米)為優(yōu)秀.把獲得的所有數(shù)據(jù),分成五組,畫出的頻率分布直方圖如圖所示.已知有4名學生的成績在10米到12米之間.
(Ⅰ)求實數(shù)的值及參加“擲實心球”項目測試的人數(shù);
(Ⅱ)根據(jù)此次測試成績的結果,試估計從該市初二年級男生中任意選取一人,“擲實心球”成績?yōu)閮?yōu)秀的概率;
(Ⅲ)若從此次測試成績最好和最差的兩組男生中隨機抽取2 名學生再進行其它項目的測試,求所抽取的2名學生來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(cosx,2cosx),(2cosx,sinx),f(x).
(1)把f(x)的圖象向右平移個單位得g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間;
(2)當與共線時,求f(x)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了確定下一年度投入某種產(chǎn)品的宣傳費用,需了解年宣傳費(單位:萬元)對年銷量(單位:噸)和年利潤(單位:萬元)的影響.對近6年宣傳費和年銷量的數(shù)據(jù)做了初步統(tǒng)計,得到如下數(shù)據(jù):
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年宣傳費x(萬元) | 38 | 48 | 58 | 68 | 78 | 88 |
年銷售量y(噸) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(萬元)與年銷售量(噸)之間近似滿足關系式即,對上述數(shù)據(jù)作了初步處理,得到相關的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(Ⅰ)從表中所給出的6年年銷售量數(shù)據(jù)中任選2年做年銷售量的調(diào)研,求所選數(shù)據(jù)中至多有一年年銷售量低于20噸的概率.
(Ⅱ)根據(jù)所給數(shù)據(jù),求關于的回歸方程;
(Ⅲ)若生產(chǎn)該產(chǎn)品的固定成本為200(萬元),且每生產(chǎn)1(噸)產(chǎn)品的生產(chǎn)成本為20(萬元)(總成本=固定成本+生產(chǎn)成本+年宣傳費),銷售收入為(萬元),假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),2019年該公司計劃投入萬元宣傳費,你認為該決策合理嗎?請說明理由.(其中為自然對數(shù)的底數(shù),)
附:對于一組數(shù)據(jù),其回歸直線中的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求曲線在點處的切線方程;
(2)討論函數(shù)的單調(diào)性;
(3)當時,曲線與軸交于點,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018衡水金卷(三)】如圖所示,在三棱錐中,平面平面, , , , .
(I)證明: 平面;
(II)若二面角的平面角的大小為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“龜兔賽跑”講述了這樣的故事:領先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當它醒來時,發(fā)現(xiàn)烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達了終點.用,分別表示烏龜和兔子所行的路程,為時間,則與故事情節(jié)相吻合的是( 。
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com