【題目】已知復(fù)數(shù)z1= +(a2﹣3)i,z2=2+(3a+1)i(a∈R,i是虛數(shù)單位).
(1)若復(fù)數(shù)z1﹣z2在復(fù)平面上對(duì)應(yīng)點(diǎn)落在第一象限,求實(shí)數(shù)a的取值范圍;
(2)若虛數(shù)z1是實(shí)系數(shù)一元二次方程x2﹣6x+m=0的根,求實(shí)數(shù)m值.
【答案】
(1)解:由條件得,z1﹣z2=( -2)+(a2﹣3a﹣4)i
因?yàn)閦1﹣z2在復(fù)平面上對(duì)應(yīng)點(diǎn)落在第一象限,故有
∴ 解得﹣2<a<﹣1
(2)解:因?yàn)樘摂?shù)z1是實(shí)系數(shù)一元二次方程x2﹣6x+m=0的根
所以z1+ = =6,即a=﹣1,
把a(bǔ)=﹣1代入,則z1=3﹣2i, =3+2i,)
所以m=z1 =13
【解析】(1)由題設(shè)條件,可先通過復(fù)數(shù)的運(yùn)算求出的代數(shù)形式的表示,再由其幾何意義得出實(shí)部與虛部的符號(hào),轉(zhuǎn)化出實(shí)數(shù)a所滿足的不等式,解出其取值范圍;(2)實(shí)系數(shù)一元二次方程x2﹣6x+m=0的兩個(gè)根互為共軛復(fù)數(shù),利用根與系數(shù)的關(guān)系求出a的值,從而求出m的值.
【考點(diǎn)精析】本題主要考查了復(fù)數(shù)的定義的相關(guān)知識(shí)點(diǎn),需要掌握形如的數(shù)叫做復(fù)數(shù),和分別叫它的實(shí)部和虛部才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖所示,正方形與矩形所在平面互相垂直,.
(1)若點(diǎn),分別為,的中點(diǎn),求證:平面平面;
(2)在線段上是否存在一點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)P表示一個(gè)點(diǎn),a,b表示兩條直線,α,β表示兩個(gè)平面,給出下列四個(gè)命題,其中正確的命題是( )
①P∈a,P∈αaα
②a∩b=P,bβaβ
③a∥b,aα,P∈b,P∈αbα
④α∩β=b,P∈α,P∈βP∈b.
A.①②
B.②③
C.①④
D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在R上的函數(shù)f(x)滿足:
①對(duì)任意x,y∈R,都有:f(x+y)=f(x)+f(y)﹣1;
②當(dāng)x<0時(shí),f(x)>1.
(Ⅰ)試判斷函數(shù)f(x)﹣1的奇偶性;
(Ⅱ)試判斷函數(shù)f(x)的單調(diào)性;
(Ⅲ)若不等式f(a2﹣2a﹣7)+ >0的解集為{a|﹣2<a<4},求f(5)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)f(x)= (m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在區(qū)間[ ,2]上單調(diào)遞減,那么mn的最大值為( )
A.16
B.18
C.25
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 已知(a4﹣1)3+2016(a4﹣1)=1,(a2013﹣1)3+2016(a2013﹣1)=﹣1,則下列結(jié)論正確的是( )
A.S2016=﹣2016,a2013>a4
B.S2016=2016,a2013>a4
C.S2016=﹣2016,a2013<a4
D.S2016=2016,a2013<a4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且 = .
(1)求角A的大;
(2)若a=4,求 b﹣c的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,AD∥BC,AD=AB=DC=BC=1,E是PC的中點(diǎn),面PAC⊥面ABCD.
(1)證明:ED∥面PAB;
(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com