“天府立交”是成都重要的南門出城通道,成都一高校對其進行調(diào)研情況如下,橋上的車流速度υ(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0千米/小時;當車流密度0<x≤20時,車流速度υ=60千米/小時.研究表明:當20≤x≤200時,車流速度υ是車流密度x的一次函數(shù).
(Ⅰ)當0<x≤200,求函數(shù)υ(x)的表達式;
(Ⅱ)當車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f (x)=x•υ(x)可以達到最大,并求出最大值.(最終運算結(jié)果精確到1輛/小時,按照取整處理,例如[100.1]=[100.9]=100).
考點:分段函數(shù)的應用
專題:應用題,函數(shù)的性質(zhì)及應用
分析:(1)直接利用待定系數(shù)法求一次函數(shù)解析式得出即可;
(2)分別利用當0≤x≤20時y=60x,當20<x≤200時y=x•v=-
1
3
x2+
200
3
x,求出一次函數(shù)以及二次函數(shù)最值即可.
解答: 解:(1)設v=kx+b,把(20,60)(200,0)代入得:
60=20k+b
0=200k+b
,
解得k=-
1
3
,b=
200
3

當20≤x≤200時大橋上的車流速度v與車流密度x的函數(shù)關(guān)系式為:v=-
1
3
x+
200
3

(2)當0≤x≤20時y=60x  當x=20時y最大為1200輛; 
當20<x≤200時y=x•v=-
1
3
x2+
200
3

=-
1
3
(x-100)2+
10000
3
,
當x=100時,y最大為3333輛.
因為3333>1200,所以當x=100時,y最大為3333輛.
點評:此題主要考查了二次函數(shù)與一次函數(shù)應用,利用一次函數(shù)增減性以及配方法求出二次函數(shù)最值是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=
x, x≤2
-x, x>2
畫出輸入x,打印f(x)的程序框圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果實數(shù)x,y滿足x2+y2-4x+1=0,求
y
x
最大值;
②y-x的最小值;
③x2+y2的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

O為坐標原點,已知向量
OZ1
,
OZ2
分別對應復數(shù)z1,z2,且z1=
3
a+5
+(10-a2)i,z2=
2
1-a
+(2a-5)i(a∈R),
z1
+z2可以與任意實數(shù)比較大小,求
OZ1
OZ2
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知M(-1,m),N(2,n)是二次函數(shù)f(x)=ax2(a>0)圖象上兩點,且MN=3
2

(1)求a的值;
(2)求f(x)的圖象在N點處切線的方程;
(3)設直線x=t與f(x)和曲線y=lnx的圖象分別交于點P、Q,求PQ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,已知圓C的圓心C(3,
π
6
),半徑r=1,Q點在圓C上運動.
(1)求圓C的極坐標方程;
(2)若P在直線OQ上運動,且OQ:QP=2:3,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z滿足(1+2i)•z為實數(shù)(i為虛數(shù)單位),且|z|=
5
,求z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

受市場的影響,三峽某旅游公司的經(jīng)濟效益出現(xiàn)了一定程度的滑坡,現(xiàn)需要對某一景點進行改造升級,從而擴大內(nèi)需,提高旅游增加值.經(jīng)過市場調(diào)查,旅游增加值y萬元與投入x萬元之間滿足:y=
51
50
x-ax2-ln
x
10
,且
x
2x-12
∈[11,+∞),當x=10時,y=9.2.
(1)求y=f(x)的解析式和投入x的取值范圍;
(2)求出旅游增加值y取得最大值時對應的x值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}中,已知a1=1,a5=81,則a3=
 

查看答案和解析>>

同步練習冊答案