【題目】某商家統(tǒng)計(jì)了去年,兩種產(chǎn)品的月銷售額(單位:萬元),繪制了月銷售額的雷達(dá)圖,圖中點(diǎn)表示產(chǎn)品2月份銷售額約為20萬元,點(diǎn)表示產(chǎn)品9月份銷售額約為25萬元.
根據(jù)圖中信息,下面統(tǒng)計(jì)結(jié)論錯(cuò)誤的是( )
A.產(chǎn)品的銷售額極差較大B.產(chǎn)品銷售額的中位數(shù)較大
C.產(chǎn)品的銷售額平均值較大D.產(chǎn)品的銷售額波動(dòng)較小
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為實(shí)現(xiàn)有效利用扶貧資金,增加貧困村民的收入,扶貧工作組結(jié)合某貧困村水質(zhì)優(yōu)良的特點(diǎn),決定利用扶貧資金從外地購(gòu)買甲、乙、丙三種魚苗在魚塘中進(jìn)行養(yǎng)殖試驗(yàn),試驗(yàn)后選擇其中一種進(jìn)行大面積養(yǎng)殖,已知魚苗甲的自然成活率為0.8.魚苗乙,丙的自然成活率均為0.9,且甲、乙、丙三種魚苗是否成活相互獨(dú)立.
(1)試驗(yàn)時(shí)從甲、乙,丙三種魚苗中各取一尾,記自然成活的尾數(shù)為,求的分布列和數(shù)學(xué)期望;
(2)試驗(yàn)后發(fā)現(xiàn)乙種魚苗較好,扶貧工作組決定購(gòu)買尾乙種魚苗進(jìn)行大面積養(yǎng)殖,為提高魚苗的成活率,工作組采取增氧措施,該措施實(shí)施對(duì)能夠自然成活的魚苗不產(chǎn)生影響.使不能自然成活的魚苗的成活率提高了50%.若每尾乙種魚苗最終成活后可獲利10元,不成活則虧損2元,且扶貧工作組的扶貧目標(biāo)是獲利不低于37.6萬元,問需至少購(gòu)買多少尾乙種魚苗?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若存在正常數(shù),使得對(duì)任意的,都有成立,我們稱函數(shù)為“同比不減函數(shù)”.
(1)求證:對(duì)任意正常數(shù),都不是“同比不減函數(shù)”;
(2)若函數(shù)是“同比不減函數(shù)”,求的取值范圍;
(3)是否存在正常數(shù),使得函數(shù)為“同比不減函數(shù)”,若存在,求的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為數(shù)列的前項(xiàng)和,若(為常數(shù))對(duì)任意恒成立.
(1)若,求的值;
(2)若,且.
①求數(shù)列的通項(xiàng)公式;
②若數(shù)列滿足,且,求證:數(shù)列為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,動(dòng)圓過定點(diǎn)且與圓相切,圓心的軌跡為曲線.
(1)求的方程;
(2)設(shè)斜率為1的直線交于,兩點(diǎn),交軸于點(diǎn),軸交于,兩點(diǎn),若,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,傾斜角為的直線過點(diǎn).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;
(2)若直線與交于,兩點(diǎn),且,求傾斜角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次期末數(shù)學(xué)測(cè)試中,唐老師任教班級(jí)學(xué)生的考試得分情況如表所示:
分?jǐn)?shù)區(qū)間 | |||||
人數(shù) | 2 | 8 | 32 | 38 | 20 |
(1)根據(jù)上述表格,試估計(jì)唐老師所任教班級(jí)的學(xué)生在本次期末數(shù)學(xué)測(cè)試的平均成績(jī);
(2)現(xiàn)從成績(jī)?cè)?/span>中按照分?jǐn)?shù)段,采取分層抽樣的方法隨機(jī)抽取5人,再在這5人中隨機(jī)抽取2人作小題得分分析,求恰有1人的成績(jī)?cè)?/span>上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體,點(diǎn)是棱的中點(diǎn),設(shè)直線為,直線為.對(duì)于下列兩個(gè)命題:①過點(diǎn)有且只有一條直線與、都相交;②過點(diǎn)有且只有一條直線與、都成角.以下判斷正確的是( )
A.①為真命題,②為真命題B.①為真命題,②為假命題
C.①為假命題,②為真命題D.①為假命題,②為假命題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com