【題目】設(shè)函數(shù).

1)求函數(shù)的極值點(diǎn);

2)設(shè)函數(shù)有兩個(gè)零點(diǎn),求整數(shù)的最小值.

【答案】1的極大值點(diǎn)為022

【解析】

1)對(duì)求導(dǎo),,因?yàn)?/span>恒大于,所以的正負(fù)等價(jià)于的正負(fù),構(gòu)造新的函數(shù),求導(dǎo)判斷的正負(fù),從而求出的極值點(diǎn);

2)將的零點(diǎn)問題轉(zhuǎn)化為函數(shù)與函數(shù)圖像的交點(diǎn)問題,判斷的極大值的范圍,構(gòu)造關(guān)于的極大值的函數(shù),利用導(dǎo)數(shù)求得其范圍,從而得到的范圍,求出整數(shù)的最小值.

因?yàn)?/span>,

,

因?yàn)楫?dāng),,所以上為減函數(shù),

因?yàn)?/span>,又因?yàn)?/span>上為減函數(shù).

當(dāng),,即,所以為增函數(shù),

當(dāng),,即,所以為減函數(shù),

所以的極大值點(diǎn)為0.

2,

由題意函數(shù)有兩個(gè)零點(diǎn),

可轉(zhuǎn)化為函數(shù)與函數(shù)的圖像有兩個(gè)交點(diǎn),

,則,

,則,

上為減函數(shù),

因?yàn)?/span>,,

,使得,即

當(dāng),,即,所以為增函數(shù),

當(dāng),即,所以為減函數(shù),

,所以,

代入得

事實(shí)上,,即

,,

帶入化簡(jiǎn)得

又因?yàn)?/span>在區(qū)間為減函數(shù),

所以,即,

所以,即

所以整數(shù)的最小值為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校組織由5名學(xué)生參加的演講比賽,采用抽簽法決定演講順序,在“學(xué)生都不是第一個(gè)出場(chǎng),不是最后一個(gè)出場(chǎng)”的前提下,學(xué)生第一個(gè)出場(chǎng)的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王參加一次比賽,比賽共設(shè)三關(guān),第一、二關(guān)各有兩個(gè)必答題,如果每關(guān)兩個(gè)問題都答對(duì),可進(jìn)入下一關(guān),第三關(guān)有三個(gè)問題,只要答對(duì)其中兩個(gè)問題,則闖關(guān)成功,每過一關(guān)可一次性獲得價(jià)值分別為1000元,3000元,6000元的獎(jiǎng)品(不重復(fù)得獎(jiǎng)),小王對(duì)三關(guān)中每個(gè)問題回答正確的概率依次為,,且每個(gè)問題回答正確與否相互獨(dú)立.

1)求小王過第一關(guān)但未過第二關(guān)的概率;

2)用表示小王所獲得獲品的價(jià)值,寫出的概率分布列,并求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20194月,北京世界園藝博覽會(huì)開幕,為了保障園藝博覽會(huì)安全順利地進(jìn)行,某部門將5個(gè)安保小組全部安排到指定的三個(gè)不同區(qū)域內(nèi)值勤,則每個(gè)區(qū)域至少有一個(gè)安保小組的排法有(

A.150B.240C.300D.360

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由于濃酸泄漏對(duì)河流形成了污染,現(xiàn)決定向河中投入固體堿,1個(gè)單位的固體堿在水中逐步溶化,水中的堿濃度與時(shí)間的關(guān)系,可近似地表示為,只有當(dāng)河流中堿的濃度不低于1時(shí),才能對(duì)污染產(chǎn)生有效的抑制作用.

1)如果只投放1個(gè)單位的固體堿,則能夠維持有效抑制作用的時(shí)間有多長?

2)當(dāng)河中的堿濃度開始下降時(shí),即刻第二次投放1個(gè)單位的固體堿,此后,每一時(shí)刻河中的堿濃度認(rèn)為是各次投放的堿在該時(shí)刻相應(yīng)的堿濃度的和,求河中堿濃度可能取得的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)且).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為

1)求直線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;

2)若點(diǎn)在直線上,點(diǎn)在曲線上,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為,為參數(shù),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為

求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

若射線l與曲線,的交點(diǎn)分別為AB異于原點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1中,AD//平面BCC1B1,ADDB.求證:

1BC//平面ADD1A1;

2)平面BCC1B1⊥平面BDD1B1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市新上一種瓶裝洗發(fā)液,為了打響知名度,舉行為期六天的低價(jià)促銷活動(dòng),隨著活動(dòng)的有效開展,第六天該超市對(duì)前五天中銷售的洗發(fā)液進(jìn)行統(tǒng)計(jì),y表示第x天銷售洗發(fā)液的瓶數(shù),得到統(tǒng)計(jì)表格如下:

x

1

2

3

4

5

y

4

6

10

15

20

1)若yx具有線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程,并預(yù)測(cè)第六天銷售該洗發(fā)液的瓶數(shù)(按四舍五入取到整數(shù));

2)超市打算第六天加大活動(dòng)力度,購買洗發(fā)液可參加抽獎(jiǎng),中獎(jiǎng)?wù)呖深I(lǐng)取獎(jiǎng)金20元,中獎(jiǎng)概率為,已知甲、乙兩名顧客抽獎(jiǎng)中獎(jiǎng)與否相互獨(dú)立,求甲、乙所獲得獎(jiǎng)金之和X的分布列及數(shù)學(xué)期望.

參考公式:,.

查看答案和解析>>

同步練習(xí)冊(cè)答案