【題目】如圖,四棱錐P﹣ABCD中,AB∥CD,AB,E為PC中點.
(Ⅰ)證明:BE∥平面PAD;
(Ⅱ)若AB⊥平面PBC,△PBC是邊長為2的正三角形,求點E到平面PAD的距離.
【答案】(Ⅰ)證明見解析 (Ⅱ).
【解析】
(Ⅰ)取的中點,連結(jié),,推導(dǎo)出四邊形為平行四邊形,從而,由此能證明平面.
(Ⅱ)由平面,得點到平面的距離等于點到平面的距離,取的中點,連結(jié),記點到平面的距離為,三棱錐的體積,由此能求出點到平面的距離.
證明:(Ⅰ)取的中點,連結(jié),.
為的中點,,且.
又,且,
,且,故四邊形為平行四邊形.
.
又平面,平面,
平面.
解:(Ⅱ)由(Ⅰ)得平面.
故點到平面的距離等于點到平面的距離.
取的中點,連結(jié).
平面,平面,
平面平面.
又是邊長為2的正三角形,,,且.
平面平面,平面.
四邊形是直角梯形,,,,
,.
,,,,
,.
.
記點到平面的距離為,
三棱錐的體積,
.
點到平面的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市交通部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);
(3)已知滿意度評分值在內(nèi)的男生數(shù)與女生數(shù)3:2,若在滿意度評分值為的人中隨機抽取2人進行座談,求2人均為男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)
討論的單調(diào)性;
若是的極值點,且曲線在兩點 處的切線相互平行,這兩條切線在軸上的截距分別為,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓的方程為:,為圓上任意一點,過作軸的垂線,垂足為,點在上,且.
(1)求點的軌跡的方程;
(2)過點的直線與曲線交于、兩點,點的坐標為,的面積為,求的最大值,及直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),當時,,給出下列命題:
①當時, ②函數(shù)有3個零點
③的解集為 ④,都有
其中正確命題的個數(shù)是( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax2(a∈R),g(x)=2ln x.
(1)討論函數(shù)F(x)=f(x)-g(x)的單調(diào)性;
(2)若方程f(x)=g(x)在區(qū)間[,e]上有兩個不等解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O經(jīng)過橢圓C:=1(a>b>0)的兩個焦點以及兩個頂點,且點(b,)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與圓O相切,與橢圓C交于M、N兩點,且|MN|=,求直線l的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知依次滿足
(1)求點的軌跡;
(2)過點作直線交以為焦點的橢圓于兩點,線段的中點到軸的距離為,且直線與點的軌跡相切,求該橢圓的方程;
(3)在(2)的條件下,設(shè)點的坐標為,是否存在橢圓上的點及以為圓心的一個圓,使得該圓與直線都相切,如存在,求出點坐標及圓的方程,如不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】40名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如下:
(1)求頻率分布直方圖中的值;
(2)根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù) (保留小數(shù)點后兩位數(shù)字)和眾數(shù);
(3)從成績在的學(xué)生中任選3人,求這3人的成績都在中的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com