已知函數(shù)f(x)=ax2-(a+2)x+lnx.
(Ⅰ)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)當a>0時,函數(shù)f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(Ⅲ)若對任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.
【答案】分析:(Ⅰ)我們易求出f(1)及f′(1)的值,代入點斜式方程即可得到答案;
(Ⅱ)確定函數(shù)的定義域,求導(dǎo)函數(shù),分類討論,確定函數(shù)的單調(diào)性,利用函數(shù)f(x)在區(qū)間[1,e]上的最小值為-2,即可求a的取值范圍;
(Ⅲ)設(shè)g(x)=f(x)+2x,則g(x)=ax2-ax+lnx,對任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,等價于g(x)在(0,+∞)上單調(diào)遞增,由此可求a的取值范圍.
解答:解:(Ⅰ)當a=1時,f(x)=x2-3x+lnx,.         …(1分)
因為f'(1)=0,f(1)=-2,…(2分)
所以切線方程為 y=-2.                                     …(3分)
(Ⅱ)函數(shù)f(x)=ax2-(a+2)x+lnx的定義域為(0,+∞).
當a>0時,(x>0),…(4分)
令f'(x)=0,即,所以.          …(5分)
,即a≥1時,f(x)在[1,e]上單調(diào)遞增,
所以f(x)在[1,e]上的最小值是f(1)=-2;                      …(6分)
時,f(x)在[1,e]上的最小值是,不合題意;
時,f(x)在(1,e)上單調(diào)遞減,
所以f(x)在[1,e]上的最小值是f(e)<f(1)=-2,不合題意.      …(7分)
綜上可得 a≥1.                                            …(8分)
(Ⅲ)設(shè)g(x)=f(x)+2x,則g(x)=ax2-ax+lnx,對任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,等價于g(x)在(0,+∞)上單調(diào)遞增.…(9分)
,…(10分)
當a=0時,,此時g(x)在(0,+∞)單調(diào)遞增;      …(11分)
當a≠0時,只需g'(x)≥0在(0,+∞)恒成立,因為x∈(0,+∞),只要2ax2-ax+1≥0,則需要a>0,
對于函數(shù)y=2ax2-ax+1,過定點(0,1),對稱軸,只需△=a2-8a≤0,即0<a≤8.    …(12分)
綜上可得 0≤a≤8.                                        …(13分)
點評:本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性與最值,考查導(dǎo)數(shù)的幾何意義,考查恒成立問題,正確求導(dǎo)是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案