已知
OA
=(1,0),
OB
=(0,1),
OM
=(t,t)(t∈R),O是坐標原點.
(Ⅰ)若點A,B,M三點共線,求t的值;
(Ⅱ)當t取何值時,
MA
MB
取到最小值?并求出最小值.
考點:平面向量的綜合題
專題:平面向量及應用
分析:(1)求出向量的坐標,運用平行的條件可判斷求解t的值.
(2)運用坐標求解數(shù)量積,轉(zhuǎn)化為函數(shù)求解.
解答: 解:(1)
AB
=
OB
-
OA
=(-1,1),
AM
=
OM
-
OA
=(t-1,t),
∵A,B,M三點共線,∴
AB
AM
共線,t=
1
2
,
(2)
MA
=(,1-t,-t),
MB
=(-t,1-t),
MA
MB
=2t2-2t,
當t=
1
2
時,
MA
MB
取得最小值-
1
2
點評:本題考查了向量的坐標運算,結合函數(shù)的性質(zhì)求解最值,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

計算:(
2
3
100×(1
1
2
100×(
1
4
2014×42015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=(a+bx)n(n?N*
(1)當a=
1
4
,b=2時,展開式前3項的二項式系數(shù)和為37,求展開式中二項式系數(shù)最大的項的系數(shù);
(2)當時a=0,b=
1
2
,n=2時,y=f(x)與過點K(0,-1)的直線l相交于A,B兩點,點A關于y軸的對稱點為D.證明:點F(0,1)在直線BD上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱錐P-ABC的四個頂點均在半徑為2的球面上,且AB=BC=CA=2
3
,平面PAB⊥平面ABC,則三棱錐P-ABC的體積的最大值為(  )
A、4
B、3
C、4
3
D、3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2為雙曲線C:x2-y2=1的左、右焦點,點P在雙曲線C上,∠F1PF2=60°,則P到y(tǒng)軸的距離為( 。
A、
3
2
B、
6
2
C、
10
2
D、
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面的四個不等式:
①a2+b2+c2≥ab+bc+ca;②a(1-a)≤
1
4
;③
a
b
+
b
a
≥2;④(a2+b2)•(c2+d2)≥(ac+bd)2
其中不成立的有
 
 個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
2,x>m
x2+4x+2,x≤m
,若函數(shù)y=f(x)-x恰有三個零點,則實數(shù)m的取值范圍的( 。
A、[-1,2)
B、[1,2]
C、[2,+∞)
D、(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

使不等式
2
-2sinx≥0成立的x的取值集合是( 。
A、{x|2kπ+
π
4
≤x≤2kπ+
4
,k∈Z}
B、{x|2kπ+
π
4
≤x≤2kπ+
4
,k∈Z}
C、{x|2kπ-
4
≤x≤2kπ+
π
4
,k∈Z}
D、{x|2kπ+
4
≤x≤2kπ+
4
,k∈Z}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:以下命題正確的是
 
 (注:把你認為正確的命題的序號都填上)
①非零向量
a
、
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為30°;
a
b
>0,是
a
b
的夾角為銳角的充要條件;
③命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0或n≠0”;
④若(
AB
+
AC
•(
AB
-
AC
)
=0,則△ABC為等腰三角形.

查看答案和解析>>

同步練習冊答案