方程x2+(2m-1)x+4-2m=0的一根大于2,一根小于2,那么實(shí)數(shù)m的取值范圍是__________.

 

(-∞,-3)

【解析】設(shè)f(x)=x2+(2m-1)x+4-2m,其圖象開口向上,由題意,得f(2)<0,即22+

(2m-1)×2+4-2m<0,解得m<-3.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(五)(解析版) 題型:解答題

已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3.

(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;

(2)數(shù)列{cn}滿足cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Sn.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(三)(解析版) 題型:解答題

已知函數(shù)f(x)=-2x+4,令Sn=f()+f()+f()+…+f()+f(1).

(1)求Sn;

(2)設(shè)bn=(a∈R)且bn<bn+1對(duì)所有正整數(shù)n恒成立,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(三)(解析版) 題型:選擇題

已知{an}為等差數(shù)列,其公差為-2,且a7是a3與a9的等比中項(xiàng),Sn為{an}的前n項(xiàng)和,n∈N*,則S10的值為(  )

A.-110 B.-90 C.90 D.110

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:解答題

若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點(diǎn).已知a,b是實(shí)數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個(gè)極值點(diǎn).

(1)求a和b的值;

(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+2,求g(x)的極值點(diǎn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:選擇題

設(shè)f(x)是定義在實(shí)數(shù)集R上的函數(shù),滿足條件y=f(x+1)是偶函數(shù),且當(dāng)x≥1時(shí),f(x)=()x-1,則f(),f(),f()的大小關(guān)系是 (  )

A.f()>f()>f()

B.f()>f()>f()

C.f()>f()>f()

D.f()>f()>f()

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:選擇題

已知集合A={-1,1},B={x|mx=1},且A∪B=A,則m的值為 (  )

A.1或-1或0 B.-1

C.1或-1 D.0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第四章平面向量、數(shù)系擴(kuò)充與復(fù)數(shù)引入(解析版) 題型:選擇題

下面是關(guān)于復(fù)數(shù)z=+的四個(gè)命題:

p1:|z|=2;p2:z2=4i;p3:=2i;p4:z的虛部是0,其中的真命題為(  )

A.p1,p2 B.p1,p3 C.p2,p3 D.p3,p4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第六章 不等式、推理與證明(解析版) 題型:選擇題

(2013·隨州模擬)變量x,y滿足約束條件則目標(biāo)函數(shù)z=3|x|+|y-3|的取值范圍是(  )

A. B. C.[-2,3] D.[1,6]

 

查看答案和解析>>

同步練習(xí)冊(cè)答案