某生產(chǎn)車間的生產(chǎn)技術(shù)成熟,產(chǎn)品質(zhì)量穩(wěn)定,為了掌握產(chǎn)品質(zhì)量情況,前后進(jìn)行了5次抽檢,每次抽取樣本10件,檢查情況如下表(產(chǎn)品質(zhì)量等級僅分為一等品和二等品兩種)
抽檢次數(shù)第1次第2次第3次第4次第5次
二等品個(gè)數(shù)01211
(1)以樣本中二等品的頻率作為產(chǎn)品總體中二等品的概率,求從產(chǎn)品中任取3件恰有1件是二等品的概率;
(2)在第3次抽檢的樣本中(含2個(gè)二等品),任取3件,其中二等品的件數(shù)為X,求X的分布列和期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,離散型隨機(jī)變量及其分布列
專題:概率與統(tǒng)計(jì)
分析:(1)5次抽檢中,共有5件二等品,樣本中二等品的頻率為0.1,所以從總體中任取一件產(chǎn)品為二等品的概率為0.1,進(jìn)而可得從產(chǎn)品中任取3件恰有1件是二等品的概率P=
C
1
3
×0.1×(1-0.1)2;
(2)依題意知X=0,1,2,求出P(X=i),i=0,1,2的概率,進(jìn)而得到隨機(jī)變量X分布列和期望.
解答: 解:(1)5次抽檢中,共有5件二等品,樣本中二等品的頻率為0.1,
所以從總體中任取一件產(chǎn)品為二等品的概率為0.1,
從產(chǎn)品中任取3件恰有1件是二等品的概率P=
C
1
3
×0.1×(1-0.1)2=0.243
(2)依題意知X=0,1,2,
則P(X=0)=
C
3
8
C
3
10
=
7
15

P(X=1)=
C
2
8
C
1
2
C
3
10
=
7
15
,
P(X=2)=
C
2
8
C
1
2
C
3
10
=
1
15
,
∴隨機(jī)變量X的分布列是
 2
 P 
7
15
 
7
15
1
15
 
∴E(x)=0×
7
15
+1×
7
15
+2×
1
15
=
3
5
點(diǎn)評:此題考查了學(xué)生對于題意的理解能力及計(jì)算能力,還考查了互斥事件一個(gè)發(fā)生的概率公式及離散型隨機(jī)變量的定義及其分布列和期望的定義與計(jì)算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是
 
(寫序號(hào))
①命題“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”:
②函數(shù)f(x)=cos2ax-sin2ax的最小正周期為“π”是“a=1”的必要不充分條件;
③x2+2x≥ax在x∈[1,2]上恒成立?(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④在△ABC中,“A>B”是“sinA>sinB”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z滿足(2+i)z=-3+i,則z=( 。
A、2+iB、2-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足an+12=4Sn+4n-3,且a2,a5,a14恰好是等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)記數(shù)列{bn}的前n項(xiàng)和為Tn,若對任意的n∈N*,(Tn+
3
2
)k≥3n-6恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下三個(gè)關(guān)于圓錐曲線的命題:
①設(shè)A、B是兩定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
②方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
③雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點(diǎn).
其中是真命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對某班級50名同學(xué)一年來參加社會(huì)實(shí)踐的次數(shù)進(jìn)行的調(diào)查統(tǒng)計(jì),得到如下頻率分布表:
參加次數(shù)0123
人數(shù)0.10.20.40.3
根據(jù)上表信息解答以下問題:
(Ⅰ)從該班級任選兩名同學(xué),用η表示這兩人參加社會(huì)實(shí)踐次數(shù)之和,記“函數(shù)f(x)=x2-ηx-1在區(qū)間(4,6)內(nèi)有零點(diǎn)”的事件為A,求A發(fā)生的概率P;
(Ⅱ)從該班級任選兩名同學(xué),用ξ表示這兩人參加社會(huì)實(shí)踐次數(shù)之差的絕對值,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式(a-2)x2+2(a-2)x-4<0對一切x∈R恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一種新型的洗衣液,去污速度特別快.已知每投放k(1≤k≤4)且k∈R個(gè)單位的洗衣液在一定量水的洗衣機(jī)中,它在水中釋放的濃度y(克/升)隨著時(shí)間x(分鐘)變化的函數(shù)關(guān)系式近似為y=k•f(x),其中y=
4(
16
9-x
-1) 
 
,0≤x≤5
4(11-
2
45
x2),5<x≤16
.根據(jù)經(jīng)驗(yàn),當(dāng)水中洗衣液的濃度不低于4(克/升)時(shí),它才能起到有效去污的作用.
(Ⅰ)若投放k個(gè)單位的洗衣液,3分鐘時(shí)水中洗衣液的濃度為4(克/升),求k的值;
(Ⅱ)若投放4個(gè)單位的洗衣液,則有效去污時(shí)間可達(dá)幾分鐘?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2+2ax(x≥1)
2ax-1(x<1)
,若存在兩個(gè)不相等的實(shí)數(shù)x1,x2,使得f(x1)=f(x2),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案