【題目】根據(jù)統(tǒng)計(jì),某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對應(yīng)數(shù)據(jù)的散點(diǎn)圖,如圖所示.
(1)依據(jù)數(shù)據(jù)的散點(diǎn)圖可以看出,可用線性回歸模型擬合與的關(guān)系,請計(jì)算相關(guān)系數(shù)并加以說明(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);
(2)求關(guān)于的回歸方程,并預(yù)測液體肥料每畝使用量為12千克時,西紅柿畝產(chǎn)量的增加量約為多少?
附:相關(guān)系數(shù)公式,參考數(shù)據(jù):,.
回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,
【答案】(1);(2),6.1百千克.
【解析】
(1)直接利用相關(guān)系數(shù)的公式求相關(guān)系數(shù),再根據(jù)相關(guān)系數(shù)的大小判斷可用線性回歸模型擬合與的關(guān)系.(2)利用最小二乘法求回歸方程,再利用回歸方程預(yù)測得解.
(1)由已知數(shù)據(jù)可得,.
所以,
,
,
所以相關(guān)系數(shù).
因?yàn)?/span>,所以可用線性回歸模型擬合與的關(guān)系.
(2).
那么.
所以回歸方程為.
當(dāng)時,,
即當(dāng)液體肥料每畝使用量為12千克時,西紅柿畝產(chǎn)量的增加量約為6.1百千克.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中:
①定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是增函數(shù),在區(qū)間[0,+∞)上也是增函數(shù),則函數(shù)f(x)在R上是增函數(shù);②若f(2)=f(-2),則函數(shù)f(x)不是奇函數(shù);③函數(shù)y=x-0.5是(0,1)上的減函數(shù);④對應(yīng)法則和值域相同的函數(shù)的定義域也相同;⑤若x0是二次函數(shù)y=f(x)的零點(diǎn),且m<x0<n,那么f(m)f(n)<0一定成立.
寫出上述所有正確結(jié)論的序號:_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的一段圖像如圖所示.
(1)求此函數(shù)的解析式;
(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組在暑期社會實(shí)踐活動中,通過對某商店一種商品銷售情況的調(diào)查發(fā)現(xiàn):該商品在過去的一個月內(nèi)(以30天計(jì))的日銷售價格(元)與時間(天)的函數(shù)關(guān)系近似滿足(為正常數(shù)).該商品的日銷售量(個)與時間(天)部分?jǐn)?shù)據(jù)如下表所示:
(天) | 10 | 20 | 25 | 30 |
(個) | 110 | 120 | 125 | 120 |
已知第10天該商品的日銷售收入為121元.
(I)求的值;
(II)給出以下二種函數(shù)模型:
①,②,
請你根據(jù)上表中的數(shù)據(jù),從中選擇你認(rèn)為最合適的一種函數(shù)來描述該商品的日銷售量與時間的關(guān)系,并求出該函數(shù)的解析式;
(III)求該商品的日銷售收入(元)的最小值.
(函數(shù),在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.性質(zhì)直接應(yīng)用.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調(diào)查機(jī)構(gòu)進(jìn)行了有關(guān)網(wǎng)購的調(diào)查問卷,并從參與調(diào)查的市民中隨機(jī)抽取了男女各100人進(jìn)行分析,從而得到表(單位:人)
經(jīng)常網(wǎng)購 | 偶爾或不用網(wǎng)購 | 合計(jì) | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合計(jì) |
(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為我市市民網(wǎng)購與性別有關(guān)?
(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機(jī)選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;
②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機(jī)抽取10人贈送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望和方差.
參考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某神奇“黃金數(shù)學(xué)草”的生長圖.第1階段生長為豎直向上長為1米的枝干,第2階段在枝頭生長出兩根新的枝干,新枝干的長度是原來的,且與舊枝成120°,第3階段又在每個枝頭各長出兩根新的枝干,新枝干的長度是原來的,且與舊枝成120°,……,依次生長,直到永遠(yuǎn).
(1)求第3階段“黃金數(shù)學(xué)草”的高度;
(2)求第13階段“黃金數(shù)學(xué)草”的高度;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(0<φ<π)
(1)當(dāng)φ時,在給定的坐標(biāo)系內(nèi),用“五點(diǎn)法”做出函數(shù)f(x)在一個周期內(nèi)的圖象;
(2)若函數(shù)f(x)為偶函數(shù),求φ的值;
(3)在(2)的條件下,求函數(shù)在[﹣π,π]上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)試作出的圖象,并根據(jù)圖象寫出的單調(diào)區(qū)間;
(2)若函數(shù)有兩個零點(diǎn),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在測試中,客觀題難度的計(jì)算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總?cè)藬?shù).現(xiàn)對某校高三年級120名學(xué)生進(jìn)行一次測試,共5道客觀題.測試前根據(jù)對學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:
題號 | 1 | 2 | 3 | 4 | 5 |
考前預(yù)估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
測試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號后統(tǒng)計(jì)各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):
學(xué)生編號 題號 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
(Ⅰ)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測的答對人數(shù)及相應(yīng)的實(shí)測難度填入下表,并估計(jì)這120名學(xué)生中第5題的實(shí)測答對人數(shù);
題號 | 1 | 2 | 3 | 4 | 5 |
實(shí)測答對人數(shù) | |||||
實(shí)測難度 |
(Ⅱ)從編號為1到5的5人中隨機(jī)抽取2人,求恰好有1人答對第5題的概率;
(Ⅲ)定義統(tǒng)計(jì)量,其中為第題的實(shí)測難度, 為第題的預(yù)估難度.規(guī)定:若,則稱該次測試的難度預(yù)估合理,否則為不合理.判斷本次測試的難度預(yù)估是否合理.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com