【題目】已知函數 .
(1)求f(x)的最小正周期和單調遞增區(qū)間;
(2)如果△ABC的三邊a,b,c滿足b2=ac,且邊b所對角為x,試求x的范圍及此時函數f(x)的值域.
【答案】
(1)解:函數
= sin + cos +
=sin( + )+ ;
∴f(x)的最小正周期為 ,
由 ,
解得 ,
∴f(x)的單調遞增區(qū)間為 (k∈Z);
(2)△ABC中,b2=ac,
∴ ,即 ;
又x∈(0,π),∴x的取值范圍是 ;
由(1)知f(x)在 上遞增,在 上遞減;
又 ,
∴f(0)<f(x)≤f( ),
即 <f(x)≤1+ ;
此時,函數f(x)的值域為 .
【解析】(1)根據三角簡單恒等變換,再由正弦函數的圖象及其性質得出單調區(qū)間,(2)由余弦定理可得出cosx≥,判斷出x的取值范圍,結合f(x)的單調區(qū)間得出f(x)的值域.
【考點精析】關于本題考查的兩角和與差的正弦公式和正弦函數的單調性,需要了解兩角和與差的正弦公式:;正弦函數的單調性:在上是增函數;在上是減函數才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)在△ABC中,角A,B,C的對邊分別為a,b,c,C=,a=5,△ABC的面積為10.
(1)求b,c的值;
(2)求cos(B-)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩船駛向一個不能同時停泊兩艘船的碼頭,它們在一天二十四小時內到達該碼頭的時刻是等可能的.如果甲船停泊時間為1小時,乙船停泊時間為2小時,求它們中的任意一艘都不需要等待碼頭空出的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲船在島的正南方處,千米,甲船以每小時千米的速度向正北航行,同時乙船自出發(fā)以每小時千米的速度向北偏東的方向駛去,當甲,乙兩船相距最近時,它們所航行的時間是( )
A. 分鐘 B. 分鐘 C. 分鐘 D. 分鐘
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數y=loga(x+3)﹣1(a>0,且a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中m,n均大于0,則 的最小值為( 。
A.2
B.4
C.8
D.16
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱錐 ,底面 是以 為直角頂點的等腰直角三角形, , ,二面角 的大小為 .
(1)求直線 與平面 所成角的大。
(2)求二面角 的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從參加高一年級期中考試的學生中隨機抽出60名學生,將其物理成績(均為整數)分成六段[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求分數在[70,80)內的頻率,并補全這個頻率分布直方圖;
(2)統(tǒng)計方法中,同一組數據常用該組區(qū)間的中點值作為代表,據此估計本次考試中的平均分.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com