【題目】從甲地到乙地要經(jīng)過(guò)3個(gè)十字路口,設(shè)各路口信號(hào)燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為.
(Ⅰ)設(shè)表示一輛車從甲地到乙地遇到紅燈的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(Ⅱ)若有2輛車獨(dú)立地從甲地到乙地,求這2輛車共遇到1個(gè)紅燈的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象在點(diǎn)處的切線方程為.
(1)求函數(shù)的解析式;
(2)若對(duì)任意,不等式恒成立,求正整數(shù)t的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若對(duì),都有()成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)若不過(guò)原點(diǎn)的直線與橢圓相交于,兩點(diǎn),與直線相交于點(diǎn),且是線段的中點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面,底面是平行四邊形, , , , 為的中點(diǎn),點(diǎn)在線段上.
(Ⅰ)求證: ;
(Ⅱ)試確定點(diǎn)的位置,使得直線與平面所成的角和直線與平面所成的角相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近日,據(jù)媒體報(bào)道稱,“雜交水稻之父”袁隆平及其團(tuán)隊(duì)培育的超級(jí)雜交稻品種“湘兩優(yōu)900(超優(yōu)千號(hào))”再創(chuàng)畝產(chǎn)世界紀(jì)錄,經(jīng)第三方專家測(cè)產(chǎn),該品種的水稻在實(shí)驗(yàn)田內(nèi)畝產(chǎn)1203.36公斤.中國(guó)工程院院士袁隆平在1973年率領(lǐng)科研團(tuán)隊(duì)開(kāi)啟了的雜交水稻王國(guó)的大門,在數(shù)年的時(shí)間內(nèi)就解決了十多億人的吃飯問(wèn)題,有力回答了世界“誰(shuí)來(lái)養(yǎng)活中國(guó)”的疑問(wèn).2012年,在袁隆平的實(shí)驗(yàn)田內(nèi)種植了,兩個(gè)品種的水稻,為了篩選出更優(yōu)的品種,在,兩個(gè)品種的實(shí)驗(yàn)田中分別抽取7塊實(shí)驗(yàn)田,如圖所示的莖葉圖記錄了這14塊實(shí)驗(yàn)田的畝產(chǎn)量(單位:),通過(guò)莖葉圖比較兩個(gè)品種的均值及方差,并從中挑選一個(gè)品種進(jìn)行以后的推廣,有如下結(jié)論:①.品種水稻的平均產(chǎn)量高于品種水稻,推廣品種水稻;②.品種水稻的平均產(chǎn)量高于品種水稻,推廣品種水稻;③.品種水稻的比品種水稻產(chǎn)量更穩(wěn)定,推廣品種水稻;④.品種水稻的比品種水稻產(chǎn)量更穩(wěn)定,推廣品種水稻;
其中正確結(jié)論的編號(hào)為( )
A. ①② B. ①③ C. ②④ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,設(shè)與交于、兩點(diǎn),中點(diǎn)為,的垂直平分線交于、.以為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立直角坐標(biāo)系.
(1)求的直角坐標(biāo)方程與點(diǎn)的直角坐標(biāo);
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分,(1)小問(wèn)7分,(2)小問(wèn)5分)
設(shè)函數(shù)
(1)若在處取得極值,確定的值,并求此時(shí)曲線在點(diǎn)處的切線方程;
(2)若在上為減函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
求函數(shù)的單調(diào)區(qū)間和極值.
若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com