【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若,在上恒成立,求整數(shù)的最大值.
【答案】(1) ,當(dāng)時,在上為增函數(shù);當(dāng)時,在上為增函數(shù),在上為減函數(shù).
(2) 整數(shù)的最大值為.
【解析】分析:(1)先求導(dǎo)數(shù),再解不等式,根據(jù)a的大小討論單獨(dú)區(qū)間,(2)先參變分離,轉(zhuǎn)化研究函數(shù)最小值,利用導(dǎo)數(shù)可得單調(diào)性以及最小值取值范圍,最后確定整數(shù)的最大值.
詳解:(1),
當(dāng)時,,則在上為增函數(shù),
當(dāng)時,由,得,則在上為增函數(shù);
由,得,則在上為減函數(shù).
綜上,當(dāng)時,在上為增函數(shù);
當(dāng)時,在上為增函數(shù),在上為減函數(shù).
(2)由題意,恒成立,即,
設(shè),則,
令.則,
所以,在上為增函數(shù),
由,,,
故在上有唯一實(shí)數(shù)根,
使得,
則當(dāng)時,;當(dāng)時,,
即在上為減函數(shù),上為增函數(shù),
所以在處取得極小值,為,
∴,由,得整數(shù)的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老人,結(jié)果如下:
(Ⅰ)估計該地區(qū)老年人中,需要志愿提供幫助的老年人的比例;
(Ⅱ)能否有99℅的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提出更好的調(diào)查辦法來估計該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由。
是否需要志愿者 性別 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
參考數(shù)據(jù):
| 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓經(jīng)過點(diǎn),且點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的兩個點(diǎn),線段的中垂線的斜率為且直線與交于點(diǎn),為坐標(biāo)原點(diǎn),求證:三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬元,每生產(chǎn)千件需另投入2 .7萬元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,
且,
(I)寫出年利潤W(萬元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;
〔II〕年產(chǎn)量為多少千件時,該公司在該特許商品的生產(chǎn)中所獲年利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測試中,卷面滿分為分,考生得分為整數(shù),規(guī)定分及以上為及格.某調(diào)研課題小組為了調(diào)查午休對考生復(fù)習(xí)效果的影響,對午休和不午休的考生進(jìn)行了測試成績的統(tǒng)計,數(shù)據(jù)如下表:
分?jǐn)?shù)段 | |||||||
午休考生人數(shù) | 29 | 34 | 37 | 29 | 23 | 18 | 10 |
不午休考生人數(shù) | 20 | 52 | 68 | 30 | 15 | 12 | 3 |
(1)根據(jù)上述表格完成下列列聯(lián)表:
及格人數(shù) | 不及格人數(shù) | 合計 | |
午休 | |||
不午休 | |||
合計 |
(2)判斷“能否在犯錯誤的概率不超過的前提下認(rèn)為成績及格與午休有關(guān)”?
0.10 | 0.05 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“我將來要當(dāng)一名麥田里的守望者,有那么一群孩子在一塊麥田里玩,幾千萬的小孩子,附近沒有一個大人,我是說……除了我”《麥田里的守望者》中的主人公霍爾頓將自己的精神生活寄托于那廣闊無垠的麥田.假設(shè)霍爾頓在一塊成凸四邊形的麥田里成為守望者,如圖所示,為了分割麥田,他將連接,設(shè)中邊所對的角為,中邊所對的角為,經(jīng)測量已知,.
(1)霍爾頓發(fā)現(xiàn)無論多長,為一個定值,請你驗(yàn)證霍爾頓的結(jié)論,并求出這個定值;
(2)霍爾頓發(fā)現(xiàn)麥田的生長于土地面積的平方呈正相關(guān),記與的面積分別為和,為了更好地規(guī)劃麥田,請你幫助霍爾頓求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓 的左焦點(diǎn)為F,直線x=m與橢圓相交于點(diǎn)A、B,當(dāng)△FAB的周長最大時,△FAB的面積是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運(yùn)動”是由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號.用戶可以通過關(guān)注“微信運(yùn)動”公眾號查看自己及好友每日行走的步數(shù)、排行榜,也可以與其他用戶進(jìn)行運(yùn)動量的或點(diǎn)贊.現(xiàn)從某用戶的“微信運(yùn)動”朋友圈中隨機(jī)選取40人,記錄他們某一天的行走步數(shù),并將數(shù)據(jù)整理如下:
步數(shù)/步 | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | 10000以上 |
男性人數(shù)/人 | 1 | 6 | 9 | 5 | 4 |
女性人數(shù)/人 | 0 | 3 | 6 | 4 | 2 |
規(guī)定:用戶一天行走的步數(shù)超過8000步時為“運(yùn)動型”,否則為“懈怠型”.
(1)將這40人中“運(yùn)動型”用戶的頻率看作隨機(jī)抽取1人為“運(yùn)動型”用戶的概率.從該用戶的“微信運(yùn)動”朋友圈中隨機(jī)抽取4人,記為“運(yùn)動型”用戶的人數(shù),求和的數(shù)學(xué)期望;
(2)現(xiàn)從這40人中選定8人(男性5人,女性3人),其中男性中“運(yùn)動型”有3人,“懈怠型”有2人,女性中“運(yùn)動型”有2人,“懈怠型”有1人.從這8人中任意選取男性3人、女性2人,記選到“運(yùn)動型”的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com