(2009•黃浦區(qū)二模)已知四棱錐P-ABCD的底面是∠BAD=60°的菱形,如圖所示,則該四棱錐的主視圖(AB平行于主視圖的投影平面)可能是( 。
分析:由已知中四棱錐P-ABCD的底面是∠BAD=60°的菱形,我們根據(jù)棱錐的正視圖為三角形,結(jié)合看不到的棱畫為虛線,看到的棱畫為實線,比照四個答案中的圖形,即可得到答案.
解答:解:由已知中的幾何體P-ABCD為四棱錐
故其正視圖的外邊框為三角形
又∵四棱錐P-ABCD的底面是∠BAD=60°的菱
∴PD棱在正視圖中看不到,故應(yīng)該畫為虛線
PB棱在正視圖中可能看到,故應(yīng)該畫為實線
故選D
點評:本題考查的知識點是簡單空間圖形的三視圖,其中要注意三視圖中看不到的棱(或輪廓線)畫為虛線,本題易忽略此點,而錯選C
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃浦區(qū)二模)設(shè)α∈(0,
π
2
),則
sin3α
cosα
+
cos3α
sinα
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃浦區(qū)二模)已知角α的頂點在原點,始邊與x軸正半軸重合,點P(-4m,3m)(m<0)是角α終邊上一點,則2sinα+cosα=
-
2
5
-
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃浦區(qū)二模)關(guān)于x的方程(2+x)i=2-x(i是虛數(shù)單位)的解x=
-2i
-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃浦區(qū)二模)若函數(shù)f(x)=
x
2x+1
-ax-2
是定義域為R的偶函數(shù),則實數(shù)a=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃浦區(qū)二模)已知全集U=R,A={x|
x-1x-2
≥0,x∈R}
,B={x||x-1|≤1,x∈R},則(CRA)∩B=
(1,2]
(1,2]

查看答案和解析>>

同步練習(xí)冊答案