【題目】隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式.某機(jī)構(gòu)對(duì)“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信交流”贊成人數(shù)如下表.

年齡(單位:歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(Ⅰ)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

(Ⅱ)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎(jiǎng)勵(lì),求3人中至少有1人年齡在[55,65)的概率.

參考數(shù)據(jù)如下:

附臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的觀測(cè)值: (其中

【答案】(Ⅰ)列聯(lián)表見解析,有的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);(Ⅱ)

【解析】試題分析:

(Ⅰ)由所給數(shù)據(jù)可以計(jì)算出年齡不低于45歲和年齡低于45歲的的人中贊成、不贊成的人數(shù),從而可得列聯(lián)表,再由所給公式計(jì)算可知有無把握;

(Ⅱ)由分層抽樣知區(qū)間上有2人,區(qū)間上有4人,把這6人分別編號(hào)后,可列舉出任取3人的各種組合,分別計(jì)算后可得所求概率.

試題解析:

(Ⅰ)根據(jù)條件得列聯(lián)表:

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

10

27

37

不贊成

10

3

13

計(jì)

20

30

50

根據(jù)列聯(lián)表所給的數(shù)據(jù)代入公式得到:

所以有的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);

(Ⅱ)解:

按照分層抽樣方法可知:

[55,65)(歲)抽取:(人);

[25,35)(歲)抽。(人)

解:在上述抽取的6人中, 年齡在[55,65)(歲)有2人,年齡[25,35)(歲)有4人。

年齡在[55,65)(歲)記為;年齡在[25,35)(歲)記為, 則從6人中任取3名的所有情況為: 、、、、、、、 共20種情況,

其中至少有一人年齡在[55,65)歲情況有:、、、、、、、、、,共16種情況。

記至少有一人年齡在[55,65)歲為事件,則

∴至少有一人年齡在[55,65)歲之間的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知設(shè)函數(shù)

(1)求 的定義域;

(2)判斷 的奇偶性并予以證明;

(3)求使 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直三棱柱ABC-A1B1C1點(diǎn)NAC上且CN=3AN,點(diǎn)MP,Q分別是AA1,A1B1BC的中點(diǎn).求證直線PQ∥平面BMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,,,分別為的中點(diǎn),.

(1)求證:平面平面;

(2)設(shè),若平面與平面所成銳二面角,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,棱錐P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.求二面角P—BC—D余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一家醫(yī)藥研究所,從中草藥中提取并合成了甲、乙兩種抗“病毒”的藥物,經(jīng)試驗(yàn),服用甲、乙兩種藥物痊愈的概率分別為.現(xiàn)已進(jìn)入藥物臨床試用階段,每個(gè)試用組由4位該病毒的感染者組成,其中2人試用甲種抗病毒藥物,2人試用乙種抗病毒藥物,如果試用組中,甲種抗病毒藥物治愈人數(shù)超過乙種抗病毒藥物的治愈人數(shù),則稱該組為“甲類組”.

(1)求一個(gè)試用組為“甲類組”的概率;

(2)觀察3個(gè)試用組,用表示這3個(gè)試用組中“甲類組”的個(gè)數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分15分)在直三棱柱中,底面是邊長(zhǎng)為2的正三角形, 是棱的中點(diǎn),且.

1)試在棱上確定一點(diǎn),使平面;

2)當(dāng)點(diǎn)在棱中點(diǎn)時(shí),求直線與平面所成角的大小的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且點(diǎn)到直線的距離為 的公共弦長(zhǎng)為.

(1)求橢圓的方程及點(diǎn)的坐標(biāo);

(2)過點(diǎn)的直線交于兩點(diǎn),與交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科技興趣小組對(duì)晝夜溫差的大小與小麥新品種發(fā)芽多少之間的關(guān)系進(jìn)行了研究,記錄了2016年12月1日至12月5日五天的晝夜溫差與相應(yīng)每天100顆種子的發(fā)芽得到了如下數(shù)據(jù):

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差

9

11

10

12

13

發(fā)芽數(shù)(顆)

21

34

26

36

40

現(xiàn)從這5組數(shù)據(jù)中任選兩組,用余下的三組數(shù)據(jù)求回歸直線方程,再對(duì)被選取的兩組數(shù)據(jù)進(jìn)行檢驗(yàn).

(Ⅰ)求選取的兩組數(shù)據(jù)恰好是不相鄰的兩天的概率;

(Ⅱ)若選取的是12月1日和12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)余下的三組數(shù)據(jù),求出的線性回歸直線方程

(Ⅲ)若由線性回歸直線方程得到的估計(jì)值與所選出的兩組實(shí)際數(shù)據(jù)的誤差均不超過兩顆,則認(rèn)為得到的回歸直線方程是可靠的,試判斷(Ⅱ)中得到的線性回歸直線方程是否可靠.

附:在線性回歸方程中,.

查看答案和解析>>

同步練習(xí)冊(cè)答案