在△ABC中,角A,B,C的對邊分別為a,b,c,已知cosB=
4
5
,a=5c.
(1)求sinC的值;
(2)若△ABC的面積S=
3
2
sinAsinC,求b的值.
考點:正弦定理,余弦定理
專題:解三角形
分析:(1)△ABC中,由條件利用余弦定理求出b=3
2
c;由cosB=
4
5
,求得sinB=
3
5
,再由正弦定理可得
b
sinB
=
c
sinC
,求得sinC的值.
(2)由a=5c,可得sinA=5sinC的值,由△ABC的面積S=
3
2
sinAsinC=
1
2
ac•sinB,求得b的值.
解答: 解:(1)∵△ABC中,cosB=
4
5
,a=5c,故由余弦定理可得
b2=a2+c2-2ac•cosB=18c2,∴b=3
2
c.
∵cosB=
4
5
,∴sinB=
3
5
,再由正弦定理可得
b
sinB
=
c
sinC
,即
3
2
c
3
5
=
c
sinC
,
求得sinC=
2
10

(2)∵a=5c,∴sinA=5sinC=
2
2
.∴△ABC的面積S=
3
2
sinAsinC=
3
20

又∵△ABC的面積S=
1
2
ac•sinB=
3
2
c2=
b2
12
,∴
b2
12
=
3
20
,∴b=
3
5
5
點評:本題主要考查正弦定理和余弦定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,其中一個焦點F(
3
,0)
(Ⅰ)求橢圓E的方程;
(Ⅱ)若B、C為橢圓E長軸的左、右兩端點,且
GC
=3
BG
,點A在橢圓E上.求|GA|的取值范圍.
(Ⅲ)若橢圓E與y軸的負半軸交于點P,l1,l2是過點P且互相垂直的兩條直線,l1與以橢圓E的長軸為直徑的圓交于兩點M、N,l2交橢圓E于另一點D,求△MND面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間三點A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求以
AB
,
AC
為邊的平行四邊形的面積;
(2)若|
a
|=
3
,且
a
分別與
AB
,
AC
垂直,求向量
a
的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示莖葉圖記錄了甲,乙兩組各三名同學(xué)在期末考試中的數(shù)學(xué)成績(滿分為100分).乙組記錄中有一個數(shù)字模糊,無法確認,假設(shè)這個數(shù)字具有隨機性,并在圖中以a表示.
(Ⅰ)若甲,乙兩個小組的數(shù)學(xué)平均成績相同,求a的值.
(Ⅱ)求乙組平均成績超過甲組平均成績的概率.
(Ⅲ)當(dāng)a=2時,分別從甲,乙兩組同學(xué)中各隨機選取一名同學(xué),求這兩名同學(xué)的數(shù)學(xué)成績之差的絕對值為2分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,DE=2AB=2,AE與平面ACD所成角為
π
4
,F(xiàn)在線段CD上,且FD=2CF.
(Ⅰ)試判斷直線AF與平面BCE的位置關(guān)系,并加以證明;
(Ⅱ)求多面體ABEDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)=
1
2
(sinx+|sinx|),x∈R
(1)求函數(shù)f(x)的周期T,與單調(diào)增區(qū)間.
(2)函數(shù)y=f(x)與y=lgx的圖象有幾個公共交點.
(3)設(shè)關(guān)于x的函數(shù)g(x)=-2sin2x-2acosx-2a+1的最小值為h(a),試確定滿足h(a)=
1
2
的a的值,并對此時的a值求g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程
x2
24-k
+
y2
16+k
=1表示橢圓,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos(-945°)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1+
2
)5
=a+
2
b(a,b為有理數(shù)),則a-b的值為
 

查看答案和解析>>

同步練習(xí)冊答案