精英家教網 > 高中數學 > 題目詳情
已知B、C是兩個定點,∣BC∣=6,且△ABC的周長等于16,則頂點A的軌跡方程為                .

試題分析:以直線軸,線段的中垂線為軸,建立平面直角坐標系,由題>,由橢圓的定義,可知頂點的軌跡是以為焦點的橢圓,且,,故頂點的軌跡方程是.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知拋物線的焦點為F2,點F1與F2關于坐標原點對稱,以F1,F2為焦點的橢圓C過點.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設點,過點F2作直線與橢圓C交于A,B兩點,且,若的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的一個頂點為,焦點在軸上,若右焦點到直線的距離為3.
(1)求橢圓的標準方程;
(2)設直線與橢圓相交于不同的兩點、,當時,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓:,離心率為,焦點的直線交橢圓于兩點,且的周長為4.
(Ⅰ)求橢圓方程;
(Ⅱ) 直線與y軸交于點P(0,m)(m0),與橢圓C交于相異兩點A,B且.若,求m的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓,為其右焦點,離心率為.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點,問是否存在直線,使與橢圓交于兩點,且.若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓焦點在x軸上,A為該橢圓右頂點,P在橢圓上一點,,則該橢圓的離心率e的范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓的焦距為(     )
A.10B.5C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,在中,邊上的高分別為,垂足分別是,則以為焦點且過的橢圓與雙曲線的離心率分別為,則的值為  (     )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設F1(-c, 0), F2(c, 0)是橢圓(a>b>0)的兩個焦點,P是以|F1F2|為直徑的圓與橢圓的一個交點,且∠PF1F2=5∠PF2F1,則該橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案