【題目】在如圖的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中點(diǎn).
(Ⅰ)求證:AB∥平面DEG;
(Ⅱ)求證:BD⊥EG;
(Ⅲ)求多面體ADBEG的體積.
【答案】(Ⅰ)見(jiàn)解析(Ⅱ)見(jiàn)解析(Ⅲ)4
【解析】
(Ⅰ) 先證明四邊形ADGB是平行四邊形,可得AB∥DG,從而證明AB∥平面DEG.
(Ⅱ) 過(guò)D作DH∥AE交EF于H,則DH⊥平面BCFE,DH⊥EG,再證BH⊥EG,從而可證EG⊥平面BHD,故BD⊥EG.
(Ⅲ)要求多面體ADBEG的體積,利用分割的思想轉(zhuǎn)化為VADBEG=VD﹣AEB+VD﹣BEG轉(zhuǎn)化為求兩個(gè)三棱錐的體積即可.
(Ⅰ)∵AD∥EF,EF∥BC,∴AD∥BC.
又∵BC=2AD,G是BC的中點(diǎn),∴,∴四邊形ADGB是平行四邊形,∴AB∥DG,∵AB平面DEG,DG平面DEG,∴AB∥平面DEG.
(Ⅱ)∵EF⊥平面AEB,AE平面AEB,∴EF⊥AE,
又AE⊥EB,EB∩EF=E,EB,EF平面BCFE,∴AE⊥平面BCFE.
過(guò)D作DH∥AE交EF于H,連接,則DH⊥平面BCFE.
∵EG平面BCFE,∴DH⊥EG.
∵AD∥EH,DH∥AE,∴四邊形AEHD平行四邊形,∴EH=AD=2,
∴EH=BG=2,又EH∥BG,EH⊥BE,
∴四邊形BGHE為正方形,∴BH⊥EG,
又BH∩DH=H,BH平面BHD,DH平面BHD,∴EG⊥平面BHD.
∵BD平面BHD,∴BD⊥EG.
(Ⅲ)∵EF⊥平面AEB,AD∥EF,∴AD⊥平面AEB,
由(2)知四邊形BGHE為正方形,∴BE⊥BC.
∴VADBEG=VD﹣AEB+VD﹣BEG4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線,直線交拋物線于,兩點(diǎn),是拋物線外一點(diǎn),連接,分別交拋物線于點(diǎn),,且.
(Ⅰ)若,求點(diǎn)的軌跡方程;
(Ⅱ)若,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐中,底面為直角梯形,,,,,,為的中點(diǎn),為的中點(diǎn),平面底面.
(Ⅰ)證明:平面平面;
(Ⅱ)若與底面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查.為此需要抽驗(yàn)669人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門(mén)制定了下列兩種可供選擇的方案.
方案一:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)669次.
方案二:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血就只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)次);否則,若呈陽(yáng)性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這時(shí)該組個(gè)人的血總共需要化驗(yàn)次.
假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.
(1)設(shè)方案二中,某組個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列.
(2)設(shè),試比較方案二中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案一,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,且橢圓過(guò)點(diǎn)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與交于、兩點(diǎn),點(diǎn)在橢圓上,是坐標(biāo)原點(diǎn),若,判定四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)P(x,y)滿(mǎn)足|x﹣1|+|y﹣a|=1,O為坐標(biāo)原點(diǎn),若的最大值的取值范圍為,則實(shí)數(shù)a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的極值;
(2)證明:時(shí),
(3)若函數(shù)有且只有三個(gè)不同的零點(diǎn),分別記為,設(shè)且的最大值是,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)列,若存在,使得對(duì)任意都成立,則稱(chēng)數(shù)列為“折疊數(shù)列”.
(1)若,,判斷數(shù)列,是否是“ 折疊數(shù)列”,如果是,指出m的值;如果不是,請(qǐng)說(shuō)明理由;
(2)若,求所有的實(shí)數(shù)q,使得數(shù)列是3-折疊數(shù)列;
(3)給定常數(shù),是否存在數(shù)列使得對(duì)所有,都是折疊數(shù)列,且的各項(xiàng)中恰有個(gè)不同的值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的側(cè)棱與四棱錐的側(cè)棱都與底面垂直,,,,,,.
(1)證明:平面;
(2)在棱上是否存在點(diǎn)M,使平面與平面所成角的正弦值為?如果存在,指出M點(diǎn)的位置;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com