【題目】在如圖的多面體中,EF⊥平面AEBAEEB,ADEF,EFBC,BC2AD4,EF3AEBE2,GBC的中點(diǎn).

(Ⅰ)求證:AB∥平面DEG;

(Ⅱ)求證:BDEG;

(Ⅲ)求多面體ADBEG的體積.

【答案】(Ⅰ)見(jiàn)解析(Ⅱ)見(jiàn)解析(Ⅲ)4

【解析】

(Ⅰ) 先證明四邊形ADGB是平行四邊形,可得ABDG,從而證明AB∥平面DEG

(Ⅱ) 過(guò)DDHAEEFH,則DH⊥平面BCFE,DHEG,再證BHEG,從而可證EG⊥平面BHD,故BDEG

(Ⅲ)要求多面體ADBEG的體積,利用分割的思想轉(zhuǎn)化為VADBEGVDAEB+VDBEG轉(zhuǎn)化為求兩個(gè)三棱錐的體積即可.

(Ⅰ)∵ADEFEFBC,∴ADBC

又∵BC2AD,GBC的中點(diǎn),∴,∴四邊形ADGB是平行四邊形,∴ABDG,∵AB平面DEG,DG平面DEG,∴AB∥平面DEG

(Ⅱ)∵EF⊥平面AEB,AE平面AEB,∴EFAE

AEEBEBEFEEB,EF平面BCFE,∴AE⊥平面BCFE

過(guò)DDHAEEFH,連接,則DH⊥平面BCFE

EG平面BCFE,∴DHEG

ADEH,DHAE,∴四邊形AEHD平行四邊形,∴EHAD2

EHBG2,又EHBG,EHBE

∴四邊形BGHE為正方形,∴BHEG,

BHDHHBH平面BHD,DH平面BHD,∴EG⊥平面BHD

BD平面BHD,∴BDEG

(Ⅲ)∵EF⊥平面AEB,ADEF,∴AD⊥平面AEB,

由(2)知四邊形BGHE為正方形,∴BEBC

VADBEGVDAEB+VDBEG4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線,直線交拋物線于,兩點(diǎn),是拋物線外一點(diǎn),連接分別交拋物線于點(diǎn),,且

(Ⅰ)若,求點(diǎn)的軌跡方程;

(Ⅱ)若,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,底面為直角梯形,,,的中點(diǎn),的中點(diǎn),平面底面.

(Ⅰ)證明:平面平面;

(Ⅱ)若與底面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查.為此需要抽驗(yàn)669人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門(mén)制定了下列兩種可供選擇的方案.

方案一:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)669.

方案二:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血就只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)次);否則,若呈陽(yáng)性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這時(shí)該組個(gè)人的血總共需要化驗(yàn).

假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.

1)設(shè)方案二中,某組個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列.

2)設(shè),試比較方案二中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案一,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,且橢圓過(guò)點(diǎn)

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線交于、兩點(diǎn),點(diǎn)在橢圓上,是坐標(biāo)原點(diǎn),若,判定四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)Px,y)滿(mǎn)足|x1|+|ya|1,O為坐標(biāo)原點(diǎn),若的最大值的取值范圍為,則實(shí)數(shù)a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求的極值;

2)證明:時(shí),

3)若函數(shù)有且只有三個(gè)不同的零點(diǎn),分別記為,設(shè)的最大值是,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)列,若存在,使得對(duì)任意都成立,則稱(chēng)數(shù)列為“折疊數(shù)列”.

1)若,,判斷數(shù)列,是否是“ 折疊數(shù)列”,如果是,指出m的值;如果不是,請(qǐng)說(shuō)明理由;

2)若,求所有的實(shí)數(shù)q,使得數(shù)列3-折疊數(shù)列;

3)給定常數(shù),是否存在數(shù)列使得對(duì)所有都是折疊數(shù)列,且的各項(xiàng)中恰有個(gè)不同的值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的側(cè)棱與四棱錐的側(cè)棱都與底面垂直,,,,,.

1)證明:平面;

2)在棱上是否存在點(diǎn)M,使平面與平面所成角的正弦值為?如果存在,指出M點(diǎn)的位置;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案