【題目】已知具有相關(guān)關(guān)系的兩個變量之間的幾組數(shù)據(jù)如下表所示:

(1)請根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計當時, 的值;

(3)將表格中的數(shù)據(jù)看作五個點的坐標,則從這五個點中隨機抽取2個點,求這兩個點都在直線的右下方的概率.

參考公式: .

【答案】(1)見解析;(2), .(3).

【解析】試題分析:

(1)利用所給的數(shù)據(jù)描點繪制散點圖即可;

(2)由題意可求得回歸方程,據(jù)此估計當時, 的值是.

(3)由題意列出所有可能的事件,結(jié)合古典概型計算公式可得兩個點都在直線的右下方的概率是.

試題解析:

(1)散點圖如圖所示:

(2)依題意, ,

, ,

,∴;

∴回歸直線方程為,故當時, .

(3)五個點中落在直線右下方的三個點記為,另外兩個點記為,從這五個點中任取兩個點的結(jié)果有共10個,

其中兩個點均在直線的右下方的結(jié)果有3個,所以概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機按1~200編號,并按編號順序平均分為40組抽出的號碼為28,則第8組抽出的號碼應(yīng)是a;若用分層抽樣方法,則50歲以下年齡段應(yīng)抽取b人,那么a+b等于(
A.46
B.45
C.70
D.69

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個說法: ①若向量{ 、 }是空間的一個基底,則{ + 、 }也是空間的一個基底.
②空間的任意兩個向量都是共面向量.
③若兩條不同直線l,m的方向向量分別是 、 ,則l∥m
④若兩個不同平面α,β的法向量分別是 、 ,且 =(1,2,﹣2)、 =(﹣2,﹣4,4),則α∥β.
其中正確的說法的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在D上的函數(shù)f(x),若存在距離為d的兩條直線y=kx+m1和y=kx+m2 , 使得對任意x∈D都有kx+m1≤f(x)≤kx+m2恒成立,則稱函數(shù)f(x)(x∈D)有一個寬度為d的通道.給出下列函數(shù): ①f(x)= ;
②f(x)=sinx;
③f(x)=
④f(x)=
其中在區(qū)間[1,+∞)上通道寬度可以為1的函數(shù)有(寫出所有正確的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,內(nèi)角A,B,C的對邊分別是a,b,c,且a2+b2ab=c2.

(1)求C;

(2)設(shè)cos Acos B=,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)對任意實數(shù)x,y恒有f(x)=f(y)+f(x﹣y),當x>0時,f(x)<0,且f(2)=﹣3.
(1)求f(0),并判斷函數(shù)f(x)的奇偶性;
(2)證明:函數(shù)f(x)在R上的單調(diào)遞減;
(3)若不等式f(2x﹣3)﹣f(﹣22x)<f(k2x)+6在區(qū)間(﹣2,2)內(nèi)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=f(x)的圖象向右平移 單位得到函數(shù)y=cos2x的圖象,則f(x)=(
A.﹣sin2x
B.cos2x
C.sin2x
D.﹣cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (x≠1)
(1)證明f(x)在(1,+∞)上是減函數(shù);
(2)令g(x)=lnf(x),判斷g(x)=lnf(x)的奇偶性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 是(﹣∞,+∞)上的增函數(shù),那么a的取值范圍是(
A.[ ,3)
B.(0,3)
C.(1,3)
D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案