【題目】將函數(shù)y=f(x)的圖象向右平移 單位得到函數(shù)y=cos2x的圖象,則f(x)=( )
A.﹣sin2x
B.cos2x
C.sin2x
D.﹣cos2x
【答案】D
【解析】解:由題意,將函數(shù)y=cos2x的圖象向左平移 單位得到函數(shù)y=f(x)的圖象,
故:f(x)=cos[2(x+ )]=cos(2x+π)=﹣cos2x.
故選:D.
【考點精析】關(guān)于本題考查的函數(shù)y=Asin(ωx+φ)的圖象變換,需要了解圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=﹣ eax(a>0,b>0)的圖象在x=0處的切線與圓x2+y2=1相切,則a+b的最大值是( )
A.4
B.2
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為矩形,側(cè)棱PA⊥底面ABCD,點E,F(xiàn)分別為BC、PD的中點,若PA=AD=4,AB=2.
(1)求證:EF∥平面PAB.
(2)求直線EF與平面PCD所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知具有相關(guān)關(guān)系的兩個變量之間的幾組數(shù)據(jù)如下表所示:
(1)請根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計當(dāng)時, 的值;
(3)將表格中的數(shù)據(jù)看作五個點的坐標(biāo),則從這五個點中隨機(jī)抽取2個點,求這兩個點都在直線的右下方的概率.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AB=BC,AD是BC邊上的高,AE是⊙O的直徑.
(1)求證:ACBC=ADAE;
(2)過點C作⊙O的切線交BA的延長線于點F,若AF=3,CF=9,求AC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= +lg(x+2)的定義域為( )
A.(﹣2,1)
B.(﹣2,1]
C.[﹣2,1)
D.[﹣2,﹣1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=8x的焦點為F,準(zhǔn)線為l,P是l上一點,Q是直線PF與C的一個交點,若 =3 ,則|QF|= , 點Q的坐標(biāo)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)短軸的兩個頂點與右焦點的連線構(gòu)成等邊三角形,橢圓C上任意一點到橢圓左右兩個焦點的距離之和為4.
(1)求橢圓C的方程;
(2)橢圓C與X軸負(fù)半軸交于點A,直線過定點(﹣1,0)交橢圓于M,N兩點,求△AMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知橢圓的右焦點為,以橢圓與雙曲線兩條漸近線的四個交點為頂點的四邊形的面積為.
(1)求橢圓的方程;
(2)若點為橢圓上的兩點(不同時在軸上),點,證明:存在實數(shù),當(dāng)三點共線時,為常數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com