【題目】已知等差數(shù)列{an}滿足a3=7,a5+a7=26.{an}的前n項(xiàng)和為Sn .
(1)求an及Sn;
(2)令bn=﹣ (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為2,圓心角為 的扇形金屬材料中剪出一個(gè)四邊形MNQP,其中M、N兩點(diǎn)分別在半徑OA、OB上,P、Q兩點(diǎn)在弧 上,且OM=ON,MN∥PQ.
(1)若M、N分別是OA、OB中點(diǎn),求四邊形MNQP面積的最大值.
(2)PQ=2,求四邊形MNQP面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知BC=1,BB1=2,∠BCC1=90°,AB⊥側(cè)面BB1CC1 .
(1)求直線C1B與底面ABC所成角的正弦值;
(2)在棱CC1(不包含端點(diǎn)C,C1)上確定一點(diǎn)E的位置,使得EA⊥EB1(要求說(shuō)明理由).
(3)在(2)的條件下,若AB= ,求二面角A﹣EB1﹣A1的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)若在區(qū)間上為增函數(shù),求的取值范圍;
(Ⅱ)當(dāng)時(shí),證明:;
(Ⅲ)當(dāng)時(shí),試判斷方程是否有實(shí)數(shù)解,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①若,則;
②若是不共線的四點(diǎn),則是四邊形為平行四邊形的充要條件;
③若, ,則;
④的充要條件是且
其中正確命題的序號(hào)是( )
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市準(zhǔn)備實(shí)施天然氣價(jià)格階梯制,現(xiàn)提前調(diào)查市民對(duì)天然氣價(jià)格階梯制的態(tài)度,隨機(jī)抽查了50名市民,現(xiàn)將調(diào)查情況整理成了被調(diào)查者的頻率分布直方圖(如圖)和贊成者的頻數(shù)表如下:
(Ⅰ)若從年齡在,的被調(diào)查者中各隨機(jī)選取2人進(jìn)行調(diào)查,求所選取的4人中至少有2人對(duì)天然氣價(jià)格階梯制持贊成態(tài)度的概率;
(Ⅱ)若從年齡在,的被調(diào)查者中各隨機(jī)選取2人進(jìn)行調(diào)查,記選取的4人中對(duì)天然氣價(jià)格實(shí)施階梯制持不贊成態(tài)度的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)和.
(1)討論函數(shù)的奇偶性;
(2)當(dāng)時(shí),求函數(shù)在區(qū)間上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1中,E是DD1的中點(diǎn).
(1)求證:BD1∥平面AEC.
(2)求異面直線BC1與AC所成的角.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com