設(shè)M=,N=,試求曲線y=sinx在矩陣MN變換下的曲線方程.

 

y=2sin2x

【解析】MN=

設(shè)(x,y)是曲線y=sinx上的任意一點,在矩陣MN變換下對應(yīng)的點為(x′,y′).

,所以

代入y=sinx得y′=sin2x′,即y′=2sin2x′.

即曲線y=sinx在矩陣MN變換下的曲線方程為y=2sin2x.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-4第2課時練習(xí)卷(解析版) 題型:解答題

(1)求函數(shù)y=的最大值;

(2)若函數(shù)y=a最大值為2,求正數(shù)a的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-2第2課時練習(xí)卷(解析版) 題型:解答題

已知M=,N=,求二階方陣X,使MX=N.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-2第1課時練習(xí)卷(解析版) 題型:解答題

二階矩陣M對應(yīng)的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).設(shè)直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-2第1課時練習(xí)卷(解析版) 題型:解答題

在直角坐標(biāo)系中,已知△ABC的頂點坐標(biāo)為A,B,C.求△ABC在矩陣作用下變換所得到的圖形的面積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-2第1課時練習(xí)卷(解析版) 題型:解答題

點(-1,k)在伸壓變換矩陣之下的對應(yīng)點的坐標(biāo)為(-2,-4),求m、k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-1第2課時練習(xí)卷(解析版) 題型:解答題

如圖,AB和BC分別與圓O相切于點D、C,AC經(jīng)過圓心O,且BC=2OC.求證:AC=2AD.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-1第1課時練習(xí)卷(解析版) 題型:解答題

如圖,四邊形ABCD是正方形,E是AD上一點,且AE=AD,N是AB的中點,NF⊥CE于F,求證:FN2=EF·FC.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第十章第5課時練習(xí)卷(解析版) 題型:解答題

設(shè)連續(xù)擲兩次骰子得到的點數(shù)分別為m、n,令平面向量a=(m,n),b=(1,-3).

(1) 求使得事件“a⊥b”發(fā)生的概率;

(2) 求使得事件“|a|≤|b|”發(fā)生的概率.

 

查看答案和解析>>

同步練習(xí)冊答案