【題目】已知△ABC的三內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,△ABC的面積S= 且sinA=
(1)求sinB;
(2)若邊c=5,求△ABC的面積S.

【答案】
(1)解:由余弦定理有c2=a2+b2﹣2abcosC,∴a2+b2﹣c2=2abcosC,

,又 ,

∴cosC=sinC,tanC=1,在△ABC中

,在△ABC中 ,但A+B+C=π,

,

= ,

sinB= = × =


(2)解:由正弦定理有 ,又c=5,∴ ,得b=7,

∴S= bcsinA= =


【解析】(1)利用余弦定理、三角形面積計(jì)算公式可得C,再利用同角三角函數(shù)基本關(guān)系式、三角形內(nèi)角和定理、和差公式即可得出.(2)利用正弦定理、三角形面積計(jì)算公式即可得出.
【考點(diǎn)精析】關(guān)于本題考查的正弦定理的定義和余弦定理的定義,需要了解正弦定理:;余弦定理:;;才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C的對(duì)邊,sin2B=2sinAsinC.
(1)若a=b,求cosB的值;
(2)若B=60°,△ABC的面積為4 ,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中, 是自然對(duì)數(shù)的底數(shù).

(Ⅰ)若上的增函數(shù),求的取值范圍;

(Ⅱ)若,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)y=f(x)對(duì)任意的x都滿足f(x+1)=﹣f(x),當(dāng)﹣1≤x<1時(shí),f(x)=x3 , 若函數(shù)g(x)=f(x)﹣loga|x|至少6個(gè)零點(diǎn),則a取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)

設(shè)ABC三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a,b,c. 已知C=,acosA=bcosB.

(1)求角A的大。

(2)如圖,在ABC的外角ACD內(nèi)取一點(diǎn)P使得PC=2.過(guò)點(diǎn)P分別作直線CA、CD的垂線PM、PN,垂足分別是M、N.設(shè)PCA=α,求PM+PN的最大值及此時(shí)α的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列an}的前n項(xiàng)和為Sn , a1=1,a2=2,且點(diǎn)(Sn , Sn+1)在直線y=tx+1上.
(1)求Sn及an;
(2)若數(shù)列{bn}滿足bn= (n≥2),b1=1,數(shù)列{bn}的前n項(xiàng)和為T(mén)n , 求證:當(dāng)n≥2時(shí),Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】天氣預(yù)報(bào)說(shuō),未來(lái)三天每天下雨的概率都是0.6,用1、2、3、4表示不下雨,用5、6、7、8、9、0表示下雨,利用計(jì)算機(jī)生成下列20組隨機(jī)數(shù),則未來(lái)三天恰有兩天下雨的概率大約是
757 220 582 092 103 000 181 249 414 993
010 732 680 596 761 835 463 521 186 289.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題錯(cuò)誤的是(
A.如果平面α⊥平面β,那么平面α內(nèi)所有直線都垂直于平面β
B.如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ
D.如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如圖部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題.

(1)從該校高三模擬考試的成績(jī)中隨機(jī)抽取一份,利用隨機(jī)事件頻率估計(jì)概率,求數(shù)學(xué)分?jǐn)?shù)恰在[120,130)內(nèi)的頻率;
(2)估計(jì)本次考試的中位數(shù);
(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案