證明:若定義在R上的函數(shù)f(x)的圖象關于點(a,y0)和(b,y0)(a≠b)對稱,則函數(shù)f(x)是周期函數(shù),且2(a-b)是它的一個周期.

答案:
解析:

  證明:∵f(x)是圖象關于點(a,y0)和(b,y0)(a≠b)對稱,

  ∴f(2a-x)=2y0-f(x),f(2b-x)=2y0-f(x),

  ∴f[2(a-b)+x]=f[2a-(2b-x)]=2y0-f(2b-x)=2y0-[2y0-f(x)]=f(x),

  ∴f(x)是周期函數(shù),且2(a-b)是它的一個周期.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

記函數(shù)f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標的點為函數(shù)f(x)圖象上的不動點.
(1)若函數(shù)f(x)=
3x+a
x+b
圖象上有兩個關于原點對稱的不動點,求實數(shù)a,b應滿足的條件;
(2)設點P(x,y)到直線y=x的距離d=
|x-y|
2
.在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個不動點分別為A1,A2,P為函數(shù)f(x)圖象上的另一點,其縱坐標yP>3,求點P到直線A1A2距離的最小值及取得最小值時點P的坐標.
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個不動點,則不動點有奇數(shù)個”是否正確?若正確,請給予證明;若不正確,請舉一反例.若地方不夠,可答在試卷的反面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標的點為函數(shù)f(x)圖象上的不動點.
(1)若函數(shù)f(x)=
3x+ax+b
圖象上有兩個關于原點對稱的不動點,求a,b應滿足的條件;
(2)在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個不動點分別為A、B,點M為函數(shù)圖象上的另一點,且其縱坐標yM>3,求點M到直線AB距離的最小值及取得最小值時M點的坐標;
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個不動點,則不動點的有奇數(shù)個”是否正確?若正確,給出證明,并舉一例;若不正確,請舉一反例說明.

查看答案和解析>>

科目:高中數(shù)學 來源:2004年高考教材全程總復習試卷·數(shù)學 題型:044

函數(shù)f(x)的定義域為D,如果存在x0∈D,使f(x0)=x0,則稱點(x0,x0)為函數(shù)f(x)圖象上的不動點.

(1)試證明:若定義在R上的奇函數(shù)f(x)的圖象上存在有限個不動點,則不動點有奇數(shù)個.

(2)若函數(shù)f(x)=的圖象上有兩個關于直線x+y=3對稱的不動點,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源:導學大課堂必修四數(shù)學蘇教版 蘇教版 題型:047

證明:若定義在R上的函數(shù)f(x)的圖象關于直線x=a和點(b,y0)(a≠b)對稱,則函數(shù)f(x)是周期函數(shù),且4(a-b)是它的一個周期.

查看答案和解析>>

同步練習冊答案