【題目】若函數(shù)的圖像與的圖像交于不同的兩點,線段的中點為
(1)求實數(shù)的取值范圍;
(2)證明:
【答案】(1)(2)證明見解析;
【解析】
(1)設(shè),轉(zhuǎn)化為有兩個零點時的取值范圍,求,求出單調(diào)區(qū)間,確定極值,結(jié)合零點存在性定理,即可求解;
(2)將所證的不等式用表示,,再令,轉(zhuǎn)化為證明 ,再等價轉(zhuǎn)化構(gòu)造函數(shù),,利用求導(dǎo)研究函數(shù)的單調(diào)性,即可證明不等式.
(1)設(shè),
題意即有兩個不同的零點,,
當時,,在上單調(diào)遞增,
至多一個零點,不滿足題意.
當時,令,得,
當時,,單調(diào)遞減,
當時,,單調(diào)遞增,
所以時,取得極小值,
也是最小值為
若即,則至多一個零點,不滿足題意.
若即,則由,
知在存在一個零點,
又.
設(shè)在上恒成立,
,所以.
所以在存在一個零點,
從而有個兩個不同零點,滿足題意.
綜上,實數(shù)的取值范圍是.
(2)要證只要證
只需證
不妨設(shè),即證
要證,只需證,
設(shè),則
所以在上為增函數(shù),
從而,即成立.
要證,只需證
設(shè).則
所以在上為減函數(shù),從而,
即中上成立,
所以成立,即.
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標準,其合格產(chǎn)品的質(zhì)量與尺寸之間近似滿足關(guān)系式(b,c為大于0的常數(shù)).按照某項指標測定,當產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時為優(yōu)等品.現(xiàn)隨機抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:
尺寸x(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
質(zhì)量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
質(zhì)量與尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(1)現(xiàn)從抽取的6件合格產(chǎn)品中再任選2件,求選中的2件均為優(yōu)等品的概率;
(2)根據(jù)測得數(shù)據(jù)作了初步處理,得相關(guān)統(tǒng)計量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
根據(jù)所給統(tǒng)計量,求y關(guān)于x的回歸方程.
附:對于樣本,其回歸直線的斜率和截距的最小二乘估計公式分別為:,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,短軸長為.
(1)求橢圓的標準方程;
(2)若橢圓的左焦點為,過點的直線與橢圓交于兩點,則在軸上是否存在一個定點使得直線的斜率互為相反數(shù)?若存在,求出定點的坐標;若不存在,也請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在矩形中,,沿直線BD將△ABD折成,使得點在平面上的射影在內(nèi)(不含邊界),設(shè)二面角的大小為,直線 ,與平面中所成的角分別為,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某生活超市有一專柜預(yù)代理銷售甲乙兩家公司的一種可相互替代的日常生活用品.經(jīng)過一段時間分別單獨試銷甲乙兩家公司的商品,從銷售數(shù)據(jù)中隨機各抽取50天,統(tǒng)計每日的銷售數(shù)量,得到如下的頻數(shù)分布條形圖.甲乙兩家公司給該超市的日利潤方案為:甲公司給超市每天基本費用為90元,另外每銷售一件提成1元;乙公司給超市每天的基本費用為130元,每日銷售數(shù)量不超過83件沒有提成,超過83件的部分每件提成10元.
(Ⅰ)求乙公司給超市的日利潤(單位:元)與日銷售數(shù)量的函數(shù)關(guān)系;
(Ⅱ)若將頻率視為概率,回答下列問題:
(1)求甲公司產(chǎn)品銷售數(shù)量不超過87件的概率;
(2)如果僅從日均利潤的角度考慮,請你利用所學過的統(tǒng)計學知識為超市作出抉擇,選擇哪家公司的產(chǎn)品進行銷售?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠加工的零件按箱出廠,每箱有10個零件,在出廠之前需要對每箱的零件作檢驗,人工檢驗方法如下:先從每箱的零件中隨機抽取4個零件,若抽取的零件都是正品或都是次品,則停止檢驗;若抽取的零件至少有1個至多有3個次品,則對剩下的6個零件逐一檢驗.已知每個零件檢驗合格的概率為0.8,每個零件是否檢驗合格相互獨立,且每個零件的人工檢驗費為2元.
(1)設(shè)1箱零件人工檢驗總費用為元,求的分布列;
(2)除了人工檢驗方法外還有機器檢驗方法,機器檢驗需要對每箱的每個零件作檢驗,每個零件的檢驗費為1.6元.現(xiàn)有1000箱零件需要檢驗,以檢驗總費用的數(shù)學期望為依據(jù),在人工檢驗與機器檢驗中,應(yīng)該選擇哪一個?說明你的理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,斜三棱柱中,是邊長為2的正三角形,為的中點,平面,點在上,,為與的交點,且與平面所成的角為.
(1)求證:平面;
(2)求二面角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com