【題目】已知正方形ABCD和矩形ACEF所在的平面互相垂直, ,AF=1,M是線段EF的中點(diǎn).
(1)求證:AM∥平面BDE;
(2)求證:AM⊥平面BDF.
【答案】
(1)解:建立如圖的直角坐標(biāo)系,則各點(diǎn)的坐標(biāo)分別為:
O(0,0,0),A(0,1,0),B(﹣1,0,0),C(0,﹣1,0,),D(1,0,0,),
E(0,﹣1,1),F(xiàn)(0,1,1),M(0,0,1)
∵
∴ ,即AM∥OE,
又∵AM平面BDE,OE平面BDE,
∴AM∥平面BDE
(2)解:∵ ,
∴ ,
∴AM⊥BD,AM⊥DF,∴AM⊥平面BDF.
【解析】(1)利用空間向量來(lái)證明,先建立空間直角坐標(biāo)系,求出定點(diǎn)坐標(biāo),欲證AM∥平面BDE,只需用坐標(biāo)證明向量 與平面BDE上的一個(gè)向量是平行向量即可.(2)欲證AM⊥平面BDF,只需證明向量 與平面BDF中的兩個(gè)不共線向量垂直即可,也即在平面BDF中找到兩個(gè)向量,與向量 數(shù)量積等于0.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識(shí),掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行,以及對(duì)直線與平面垂直的判定的理解,了解一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)P、Q分別在直線3x﹣y+5=0和3x﹣y﹣13=0上運(yùn)動(dòng),線段PQ中點(diǎn)為M(x0 , y0),且x0+y0>4,則 的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=lnx,g(x)= x2+mx+ (m<0),直線l與函數(shù)f(x)的圖象相切,切點(diǎn)的橫坐標(biāo)為1,且直線l與函數(shù)g(x)的圖象也相切.
(1)求直線l的方程及實(shí)數(shù)m的值;
(2)若h(x)=f(x)﹣x+3,求函數(shù)h(x)的最大值;
(3)當(dāng)0<b<a時(shí),求證:f(a+b)﹣f(2a)< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),且,求證: ;
(Ⅲ)設(shè),對(duì)于任意,總存在,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1:y=kx﹣1與雙曲線x2﹣y2=1的左支交于A,B兩點(diǎn).
(1)求斜率k的取值范圍;
(2)若直線l2經(jīng)過點(diǎn)P(﹣2,0)及線段AB的中點(diǎn)Q且l2在y軸上截距為﹣16,求直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知分別是橢圓的長(zhǎng)軸與短軸的一個(gè)端點(diǎn), 是橢圓的左、右焦點(diǎn),以點(diǎn)為圓心、3為半徑的圓與以點(diǎn)為圓心、1為半徑的圓的交點(diǎn)在橢圓上,且.
(1)求橢圓的方程;
(2)設(shè)為橢圓上一點(diǎn),直線與軸交于點(diǎn),直線與軸交于點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足, .
(1)求證:數(shù)列為等差數(shù)列;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若A= ,b(1﹣cosC)=ccosA,b=2,則△ABC的面積為( )
A.
B.2
C.
D.或2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com