【題目】用C(A)表示非空集合A中的元素個數(shù),定義A*B=若A={1,2},B={x|(x2+ax)·(x2+ax+2)=0},且A*B=1,設(shè)實數(shù)a的所有可能取值組成的集合是S,則C(S)等于( )
A. 1 B. 3
C. 5 D. 7
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來鄭州空氣污染較為嚴重,現(xiàn)隨機抽取一年(365天)內(nèi)100天的空氣中指數(shù)的監(jiān)測數(shù)據(jù),統(tǒng)計結(jié)果如下:
空氣質(zhì)量 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中度重污染 | 重度污染 |
天數(shù) | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
記某企業(yè)每天由空氣污染造成的經(jīng)濟損失為 (單位:元), 指數(shù)為.當(dāng)在區(qū)間內(nèi)時對企業(yè)沒有造成經(jīng)濟損失;當(dāng)在區(qū)間內(nèi)時對企業(yè)造成經(jīng)濟損失成直線模型(當(dāng)指數(shù)為150時造成的經(jīng)濟損失為500元,當(dāng)指數(shù)為200 時,造成的經(jīng)濟損失為700元);當(dāng)指數(shù)大于300時造成的經(jīng)濟損失為2000元.
非重度污染 | 重度污染 | 合計 | |
供暖季 | |||
非供暖季 | |||
合計 | 100 |
(1)試寫出的表達式;
(2)試估計在本年內(nèi)隨機抽取一天,該天經(jīng)濟損失大于500元且不超過900元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表,并判斷是否有的把握認為鄭州市本年度空氣重度污染與供暖有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域為的偶函數(shù)滿足對,有,且當(dāng)時, ,若函數(shù)在上至多有三個零點,則的取值范圍是
__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
()若,求函數(shù)的單調(diào)區(qū)間.
()若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍.
()過坐標(biāo)原點作曲線的切線,證明:切點的橫坐標(biāo)為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義在上的偶函數(shù), ,都有,且當(dāng)時, ,若函數(shù)()在區(qū)間內(nèi)恰有三個不同零點,則實數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線,以平面直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.
(1)將曲線上的所有點的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的倍、2倍后得到曲線.試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;
(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點,點C的坐標(biāo)為(0,1).當(dāng)m變化時,解答下列問題:
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A,B,C三點的圓在y軸上截得的弦長為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com