如圖是一個(gè)幾何體的三視圖,根據(jù)圖中的數(shù)據(jù),可得該幾何體的體積是( 。
A、2B、4C、5D、7
考點(diǎn):由三視圖求面積、體積
專(zhuān)題:規(guī)律型
分析:由三視圖確定該幾何體的結(jié)構(gòu)然后利用相應(yīng)的體積公式進(jìn)行求解.
解答: 解:該幾何體底面是一個(gè)梯形,兩底邊長(zhǎng)為2,3,高為1,幾何體的高為2,
可看成中間一個(gè)三棱柱,底面如左視圖,棱柱高為1,兩側(cè)是全等的五棱錐,底面梯形兩底邊長(zhǎng)為
1
2
,1,高為1,棱錐的高為2,
故幾何體體積為
1
2
×1×2+2×
1
3
×
(
1
2
+1)
2
×2
=2.
故選:A.
點(diǎn)評(píng):本題主要考查三視圖的識(shí)別以及幾何體的體積公式.正確理解三視圖對(duì)應(yīng)的圖形是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線3x-4y+2
2
=0與拋物線x2=2
2
y和圓x2+(y-
2
2
2=
1
2
從左到右的交點(diǎn)依次為A、B、C、D,則
AB
CD
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F是雙曲線
x2
a2
-
y2
b2
=1的右焦點(diǎn),雙曲線兩漸近線分另.為l1,l2過(guò)F作直線l1的垂線,分別交l1,l2于A,B兩點(diǎn).若OA,AB,OB成等差數(shù)列,且向量
BF
FA
同向,則雙曲線的離心 率e的大小為( 。
A、
3
2
B、
2
C、2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合S={x|x2-2x-3≤0},T={x|-1<x≤4,x∈Z},則S∩T等于  (  )
A、{x|0<x≤3,x∈Z}
B、{x|0≤x≤4,x∈Z}
C、{x|-1≤x≤0,x∈Z}
D、{x|-1<x≤3,x∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|log2(x+1)|,-1<x<0
-x2+4x,x≥0
,且關(guān)于x的方程f(x)-m=0,(m∈R)恰有三個(gè)互不相同的實(shí)數(shù)根x1,x2,x3,則x1x2x3的取值范圍是( 。
A、(-4,0)
B、(-
15
4
,0)
C、[-
15
4
,0)
D、[-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方程x2+2x-a=0,
(1)若方程在x∈[-2,1]內(nèi)只有一解,求a的取值范圍;
(2)若方程在x∈[-2,1]內(nèi)有兩解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了解學(xué)生的體能情況,抽取了一個(gè)學(xué)校的部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得數(shù)據(jù)整理成統(tǒng)計(jì)圖如圖,已知圖中從左到右各個(gè)小組的高度之比分別為1:3:4:2,最左邊一組的頻數(shù)為5,請(qǐng)根據(jù)以上信息和圖形解決以下問(wèn)題:
(1)參加這次測(cè)試的學(xué)生共有多少人?
(2)求第四小組的頻率;
(3)若次數(shù)在75次以上(含75次)為達(dá)標(biāo),那么,學(xué)生的達(dá)標(biāo)率是多少?
(4)在這次測(cè)試中,學(xué)生跳繩次數(shù)的中位數(shù)落在那個(gè)小組內(nèi)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)不等式組
x>0
y>0
y≤-nx+3n
所表示的平面區(qū)域?yàn)镈n,記Dn內(nèi)的整點(diǎn)個(gè)數(shù)為an(n∈N*)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn)).
(1)求證:數(shù)列{an}的通項(xiàng)公式是an=3n(n∈N*).
(2)記數(shù)列{an}的前n項(xiàng)和為Sn,且Tn=
Sn
3•2n-1
.若對(duì)于一切的正整數(shù)n,總有Tn≤m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
ax2+x-a,x∈[
2
,2],其中a為實(shí)數(shù).
(1)求函數(shù)的最大值g(a);
(2)若對(duì)于任意的非零實(shí)數(shù)a,不等式g(a)≥λg(
1
a
)恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案