【題目】已知函數(shù),,且.
(1)若為整數(shù),且,試確定一個(gè)滿足條件的的值;
(2)設(shè)的反函數(shù)為,若,試確定的取值范圍;
(3)若,此時(shí)的反函數(shù)為,令,若對(duì)一切實(shí)數(shù),,,不等式恒成立,試確定實(shí)數(shù)的取值范圍.
【答案】(1)2 (2) (3)
【解析】
(1)將代入方程,結(jié)合指數(shù)式與對(duì)數(shù)式的轉(zhuǎn)化,即可的關(guān)于的方程,化簡(jiǎn)后即可求得一個(gè)的值.
(2)根據(jù)所給,可求得反函數(shù)解析式.根據(jù)不等式,先求得右端的最小值及相應(yīng)的,將代入左段并解不等式即可求得的取值范圍
(3)代入可得反函數(shù)解析式.將反函數(shù)解析代入,即可求得的解析式.利用換元法,將化為的表達(dá)式.結(jié)合反比例函數(shù)單調(diào)性及不等式,即可求得的取值范圍.
(1)為整數(shù), 且.且
代入可得
即
化簡(jiǎn)可得
則
所以
故滿足條件的的值可以是
(2)的反函數(shù)為
則
令,代入可得
則,
所以平方化簡(jiǎn)可得
所以
則
成立,則即可
令,令,
即,由打勾函數(shù)圖像與性質(zhì)可知當(dāng)時(shí)為單調(diào)遞增函數(shù)
所以當(dāng)時(shí)
則不等式化為
即,且且.
化簡(jiǎn)可得
即,解得
綜上可知,的取值范圍為
(3)由(2)可知
當(dāng)時(shí),
代入
可得
令
則
當(dāng),即時(shí),函數(shù)在上單調(diào)遞增
所以此時(shí)的值域?yàn)?/span>
若滿足對(duì)一切實(shí)數(shù),,,不等式恒成立
則只需即可,解得
當(dāng),即時(shí), ,不等式恒成立
當(dāng)時(shí),即.函數(shù)在上單調(diào)遞減
此時(shí)函數(shù)的值域?yàn)?/span>
若滿足對(duì)一切實(shí)數(shù),,,不等式恒成立
則只需,解不等式可得
綜上所述, 的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)M到定點(diǎn)F1(-2,0)和F2(2,0)的距離之和為.
(1)求動(dòng)點(diǎn)M軌跡C的方程;
(2)設(shè)N(0,2),過點(diǎn)P(-1,-2)作直線l,交橢圓C于不同于N的A,B兩點(diǎn),直線NA,NB的斜率分別為k1,k2,問k1+k2是否為定值?若是的求出這個(gè)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是(為參數(shù)).
(Ⅰ)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)若直線與曲線相交于,兩點(diǎn),且,求直線的傾斜角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,點(diǎn)為橢圓上一點(diǎn). 的重心為,內(nèi)心為,且,則該橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AB= ,AD=2,E,F為線段AB的三等分點(diǎn),G、H為線段DC的三等分點(diǎn).將長(zhǎng)方形ABCD卷成以AD為母線的圓柱W的半個(gè)側(cè)面,AB、CD分別為圓柱W上、下底面的直徑.
(Ⅰ)證明:平面ADHF⊥平面BCHF;
(Ⅱ)若P為DC的中點(diǎn),求三棱錐H—AGP的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線直角坐標(biāo)方程;
(2)設(shè)為曲線上的動(dòng)點(diǎn),求點(diǎn)到上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為三次函數(shù),且其圖象關(guān)于原點(diǎn)對(duì)稱,當(dāng)時(shí),的極小值為-1,則
(1)函數(shù)的解析式__________;
(2)函數(shù)的單調(diào)遞增區(qū)間為___________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=2,a2=4,且當(dāng)n≥2時(shí),an2=an-1an+1,;
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若bn=(2n-1)an,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量表得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:
(II)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com