【題目】如圖,在長方形ABCD中,AB= ,AD=2,E,F為線段AB的三等分點,G、H為線段DC的三等分點.將長方形ABCD卷成以AD為母線的圓柱W的半個側面,AB、CD分別為圓柱W上、下底面的直徑.
(Ⅰ)證明:平面ADHF⊥平面BCHF;
(Ⅱ)若P為DC的中點,求三棱錐H—AGP的體積.
科目:高中數(shù)學 來源: 題型:
【題目】九章算術中將底面為長方形,且有一條側棱與底面垂直的四棱錐稱之為“陽馬”現(xiàn)有一陽馬,其正視圖和側視圖是如圖所示的直角三角形若該陽馬的頂點都在同一個球面上,且該球的表面積為,則該“陽馬”的體積為__.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,、是兩個小區(qū)所在地,、到一條公路的垂直距離分別為,,兩端之間的距離為.
(1)某移動公司將在之間找一點,在處建造一個信號塔,使得對、的張角與對、的張角相等,試確定點的位置.
(2)環(huán)保部門將在之間找一點,在處建造一個垃圾處理廠,使得對、所張角最大,試確定點的位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商店經營的消費品進價每件14元,月銷售量(百件)與銷售價格p(元)的關系如下圖,每月各種開支2000元.
(1)寫出月銷售量(百件)與銷售價格p(元)的函數(shù)關系;
(2)寫出月利潤y(元)與銷售價格p(元)的函數(shù)關系:
(3)當商品價格每件為多少元時,月利潤最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,側面底面ABCD,側棱,底面ABCD為直角梯形,其中,,,O為AD中點.
(1)求異面直線PB與CD所成角的余弦值;
(2)線段AD上是否存在點Q,使得它到平面PCD的距離為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)某農產品近幾年的產量統(tǒng)計如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代碼t | 1 | 2 | 3 | 4 | 5 | 6 |
年產量y(萬噸) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(Ⅰ)根據表中數(shù)據,建立關于的線性回歸方程;
(Ⅱ)根據線性回歸方程預測2019年該地區(qū)該農產品的年產量.
附:對于一組數(shù)據,其回歸直線的斜率和截距的最小二乘估計分別為:,.(參考數(shù)據:,計算結果保留小數(shù)點后兩位)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的上頂點為點,右焦點為.延長交橢圓于點,且滿足.
(1)試求橢圓的標準方程;
(2)過點作與軸不重合的直線和橢圓交于兩點,設橢圓的左頂點為點,且直線分別與直線交于兩點,記直線的斜率分別為,則與之積是否為定值?若是,求出該定值;若不是,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體ABCPE中,平面PAC⊥平面ABC,AC⊥BC,PE∥BC,2PE=BC,M是線段AE的中點,N是線段PA上一點,且滿足AN=AP(0<<1).
(Ⅰ)若,求證:MN⊥PC;
(Ⅱ)是否存在,使得三棱錐M-ACN與三棱錐B-ACP的體積比為1:12?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com