函數(shù)y=2x3-12x在區(qū)間[-1,3]上的最大值和最小值分別為(  )
A、18,-8
2
B、54,-12
C、8
2
,-8
2
D、10,-8
2
考點:利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:利用導(dǎo)數(shù)性質(zhì)求解.
解答: 解:∵y=2x3-12x,x∈[-1,3],
∴y′=6x2-12,
由y′=0,得x=
2
,或x=-
2
(舍),
∵f(-1)=2×(-1)3-12×(-1)=10,
f(
2
)=2×(
2
3-12
2
=-8
2
,
f(3)=2×33-12×3=18.
∴函數(shù)y=2x3-12x在區(qū)間[-1,3]上的最大值是18,最小值是-8
2

故選:A.
點評:本題考查函數(shù)在閉區(qū)間上的最大值和最小值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式2x-y>0表示的平面區(qū)域(陰影部分)為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
是單位向量,|
b
|=
6
,且(2
a
+
b
)•(
b
-
a
)=4-
3
,則
a
b
的夾角為( 。
A、45°B、60°
C、120°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若sin2C=sin2A+sin2B則△ABC的形狀一定是(  )
A、等腰直角三角形
B、等腰三角形
C、直角三角形
D、等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個線性回歸方程為
y
=1.5x+45,其中x的取值依次為1,7,5,13,19,則
.
y
=( 。
A、58.5B、46.5
C、60D、75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n•1•2…(2n-1)(n∈N+)時,從“n=k到n=k+1”時,左邊應(yīng)增添的式子是( 。
A、2k+1
B、2k+3
C、2(2k+1)
D、2(2k+3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列變量關(guān)系是函數(shù)關(guān)系的是( 。
A、三角形邊長與面積之間的關(guān)系
B、菱形的邊長與面積之間的關(guān)系
C、四邊形的邊長與面積之間的關(guān)系
D、等邊三角形邊長與面積之間的關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:函數(shù)f(x)=lg(ax2-x+
1
16
a)的定義域為R,命題q:不等式
3x+1
<1+ax對一切正實數(shù)x均成立,如果命題p∨q為真,p∧q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:向量
e1
=(1,2),
e2
=(-3,2),向量
x
=k
e1
+
e2
,
y
=
e1
-3
e2

(1)當(dāng)k為何值時,向量
x
y
?
(2)若向量
x
y
的夾角為鈍角,求實數(shù)k的取值范圍的集合.

查看答案和解析>>

同步練習(xí)冊答案