球面上有三點A,B,C,其中OA,OB,OC兩兩互相垂直(O為球心),且過A、B、C三點的截面圓的面積為4π,則球的表面積


  1. A.
    24π
  2. B.
    18π
  3. C.
    36π
  4. D.
    20π
A
分析:根據(jù)過A、B、C三點的截面圓的面積為4π,可得過A、B、C三點的截面圓的半徑,從而可求球O的半徑,即可求得球的表面積.
解答:∵OA,OB,OC兩兩互相垂直,∴AB=BC=AC
∵過A、B、C三點的截面圓的面積為4π,
∴過A、B、C三點的截面圓的半徑為2,
∴AB=2
∵OA⊥OB,OA=OB
∴OA=
∴球的表面積為4π×=24π
故選A.
點評:本題考查球的表面積,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

球O球面上有三點A、B、C,已知AB=18,BC=24,AC=30,且球半徑是球心O到平面ABC的距離的2倍,求球O的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

表面積為16π的球面上有三點A、B、C,∠ACB=60°,AB=
3
,則球心到截面ABC的距離及B、C兩點間球面距離最大值分別為( 。
A、3,
3
B、
3
π
3
C、
3
,
3
D、3,
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

半徑為1的球面上有三點A、B、C,其中AB=1,BC=
3
,A、C兩點間的球面距離為
π
2
,則球心到平面ABC的距離為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知球面上有三點A、B、C,此三點構成一個邊長為l的等邊三角形,球心到平面ABC的距離等于球半徑
1
3
,則球半徑是
6
4
6
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

半徑為1的球面上有三點A,B,C,若A和B,A和C,B和C的球面距離都是
π
2
,過A、B、C三點做截面,則球心到面的距離為
3
3
3
3

查看答案和解析>>

同步練習冊答案