【題目】如圖,在四棱錐中,底面是邊長為2的正方形,,分別為,的中點,平面平面,且.

(1)求證:平面;

(2)求三棱錐的體積.

【答案】(1)詳見解析,(2)

【解析】試題分析: (1)證明線面平行,一般利用線面平行判定定理,即從線線平行出發(fā)給予證明,而線線平行的尋找與論證,往往需要利用平幾知識,如本題分別取中點,與構成一個平行四邊形,再利用平行四邊形性質進行求證;也可連接,利用三角形中位線性質求證;(2)求三棱錐體積,關鍵求錐的高,而求錐的高需利用線面垂直關系進行尋找.證明或尋找線面垂直,可結合條件,利用面面垂直性質定理得到邊上中線就是平面的垂線,最后根據(jù)等體積法及椎體體積公式求體積.

試題解析:(1)證明:連接,則的中點,的中點,

故在中,

平面,平面

平面.

(2)取的中點,連接

,

,

又平面平面,平面平面

平面,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知某中學高三文科班學生共有800人參加了數(shù)學與地理的水平測試,現(xiàn)從中隨機抽取100人的數(shù)學與地理的水平測試成績如下表:

成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學成績,例如:表中數(shù)學成績?yōu)榱己玫墓灿?/span>.

)若在該樣本中,數(shù)學成績優(yōu)秀率是30%,求的值;

)已知,求數(shù)學成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】.證明:

(1)當,;

(2)對任意,當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且x0時,f(x)log (x1)

(1)f(0)f(1);

(2)求函數(shù)f(x)的解析式;

(3)f(a1)<1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機對50名家用轎車駕駛員進行調查,得到其在高速公路上行駛時的平均車速情況為:在30名男性駕駛員中,平均車速超過的有20人,不超過的有10人.在20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.

(Ⅰ)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認為平均車速超過的人與性別有關;

平均車速超過

人數(shù)

平均車速不超過

人數(shù)

合計

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計

(Ⅱ )以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機抽取3輛,記這3輛車中駕駛員為女性且車速不超過的車輛數(shù)為,若每次抽取的結果是相互獨立的,求的分布列和數(shù)學期望.

參考公式: ,其中

參考數(shù)據(jù):

0.150

0.100

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間20名工人年齡數(shù)據(jù)如下表:

年齡(歲)

19

24

26

30

34

35

40

合計

工人數(shù)(人)

1

3

3

5

4

3

1

20

(1)求這20名工人年齡的眾數(shù)與平均數(shù);

(2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;

(3)從年齡在24和26的工人中隨機抽取2人,求這2人均是24歲的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A是同時符合以下性質的函數(shù)f(x)組成的集合:

x[0,+),都有f(x)∈(1,4];f(x)[0,+)上是減函數(shù).

(1)判斷函數(shù)f1(x)2f2(x)1 (x0)是否屬于集合A,并簡要說明理由;

(2)(1)中你認為是集合A中的一個函數(shù)記為g(x),若不等式g(x)g(x2)k對任意的x0總成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個不同的零點.

(Ⅰ)求的取值范圍;

(Ⅱ)記兩個零點分別為,且,已知,若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有甲、乙兩個班級進行數(shù)學考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的2×2列聯(lián)表.已知從全部210人中隨機抽取1人為優(yōu)秀的概率為.

(1)請完成上面的2×2列聯(lián)表,并判斷若按99%的可靠性要求,能否認為“成績與班級有關”;

(2)從全部210人中有放回地抽取3次,每次抽取1人,記被抽取的3人中的優(yōu)秀人數(shù)為ξ,若每次抽取的結果是相互獨立的,求ξ的分布列及數(shù)學期望E(ξ).

P(K2k0)

0.05

0.01

k0

3.841

6.635

附:

查看答案和解析>>

同步練習冊答案