已知函數(shù)f(x)的圖象與函數(shù)的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱(chēng).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若上的值不小于6,求實(shí)數(shù)a的取值范圍.
【答案】分析:(Ⅰ)設(shè)f(x)圖象上任一點(diǎn)坐標(biāo)為(x,y),利用點(diǎn)(x,y)關(guān)于點(diǎn)A(0,1)的對(duì)稱(chēng)點(diǎn)(-x,2-y)在h(x)的圖象上,結(jié)合函數(shù)解析式,即可求得結(jié)論;
(Ⅱ)題意可轉(zhuǎn)化為(x∈(0,2])恒成立,利用分離參數(shù)法,再求出函數(shù)的最值,從而可求實(shí)數(shù)a的取值范圍.
解答:解:(Ⅰ)設(shè)f(x)圖象上任一點(diǎn)坐標(biāo)為(x,y),點(diǎn)(x,y)關(guān)于點(diǎn)A(0,1)的對(duì)稱(chēng)點(diǎn)(-x,2-y)在h(x)的圖象上…(3分)
,
,∴…(6分)
(Ⅱ)由題意,∴
∵x∈(0,2],∴a+1≥x(6-x),即a≥-x2+6x-1,…(9分)
令q(x)=-x2+6x-1=-(x-3)2+8(x∈(0,2]),
∴x∈(0,2]時(shí),q(x)max=7…(11分)
∴a≥7…(12分)
點(diǎn)評(píng):本題考查函數(shù)圖象的對(duì)稱(chēng)性,考查函數(shù)解析式求解,考查恒成立問(wèn)題,分離參數(shù)、求最值是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象有且僅有由五個(gè)點(diǎn)構(gòu)成,它們分別為(1,2),(2,3),(3,3),(4,2),(5,2),則f(f(f(5)))=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•天門(mén)模擬)已知函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(1,λ),且對(duì)任意x∈R,都有f(x+1)=f(x)+2.?dāng)?shù)列{an}滿(mǎn)足a1=λ-2,2an+1=
2n,n為奇數(shù)
f(an),n為偶數(shù)

(I)求f(n)(n∈N*)的表達(dá)式;
(II)設(shè)λ=3,求a1+a2+a3+…+a2n
(III)若對(duì)任意n∈N*,總有anan+1<an+1an+2,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),且當(dāng)x<0時(shí),f(x)=2x-4,那么當(dāng)x>0時(shí),f(x)=
2x+4
2x+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•焦作一模)已知函數(shù)f(x)的圖象過(guò)點(diǎn)(
π
4
,-
1
2
),它的導(dǎo)函數(shù)f′(x)=Acos(ωx+φ)(x∈R)的圖象的一部分如圖所示,其中A>0,ω>0,|φ|<
π
2
,為了得到函
數(shù)f(x)的圖象,只要將函數(shù)y=sinx(x∈R)的圖象上所有的點(diǎn)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象關(guān)于直線x=2對(duì)稱(chēng),且當(dāng)x≠2時(shí)其導(dǎo)函數(shù)f′(x)滿(mǎn)足xf′(x)>2f′(x),若2<a<4,則下列表示大小關(guān)系的式子正確的是( 。
A、f(2a)<f(3)<f(log2a)B、f(3)<f(log2a)<f(2a)C、f(log2a)<f(3)<f(2a)D、f(log2a)<f(2a)<f(3)

查看答案和解析>>

同步練習(xí)冊(cè)答案