已知函數(shù),其中為自然對數(shù)底數(shù).

(1)當(dāng)時,求函數(shù)在點(diǎn)處的切線方程;

(2)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;

(3)已知,若函數(shù)對任意都成立,求的最大值.

(1)(2)當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(3)

【解析】

試題分析:(1)根據(jù)導(dǎo)數(shù)幾何意義可求切線斜率:,再根據(jù)點(diǎn)斜式求切線方程為,即.(2)利用導(dǎo)數(shù)求函數(shù)單調(diào)性,從導(dǎo)函數(shù)出發(fā),研究其零點(diǎn)情況:當(dāng)時,,無零點(diǎn),函數(shù)上單調(diào)遞增;當(dāng)時,由,時,單調(diào)遞減;時,,單調(diào)遞增.(3)不等式恒成立問題轉(zhuǎn)化為函數(shù)最值問題:,當(dāng)時,函數(shù)無最小值;當(dāng)時,函數(shù)最小值為0,,此時;當(dāng)時,,,最后研究函數(shù)最大值

試題解析:【解析】
(1)當(dāng)時,,, 2分

∴函數(shù)在點(diǎn)處的切線方程為,

. 4分

(2)∵,

①當(dāng)時,,函數(shù)上單調(diào)遞增; 6分

②當(dāng)時,由,

時,,單調(diào)遞減;時,,單調(diào)遞增.

綜上,當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為. 9分

(3)由(2)知,當(dāng)時,函數(shù)上單調(diào)遞增,

不可能恒成立; 10分

當(dāng)時,,此時; 11分

當(dāng)時,由函數(shù)對任意都成立,得,

,∴ 13分

,

設(shè),∴ ,

由于,令,得,

當(dāng)時,,單調(diào)遞增;時,,單調(diào)遞減.

,即的最大值為

此時. 16分

考點(diǎn):導(dǎo)數(shù)幾何意義,利用導(dǎo)數(shù)求函數(shù)單調(diào)性,利用導(dǎo)數(shù)求函數(shù)最值

考點(diǎn)分析: 考點(diǎn)1:導(dǎo)數(shù)及其應(yīng)用 試題屬性
  • 題型:
  • 難度:
  • 考核:
  • 年級:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省揚(yáng)州市高三上學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題

射擊測試有兩種方案,方案1:先在甲靶射擊一次,以后都在乙靶射擊;方案2:始終在乙靶射擊,某射手命中甲靶的概率為,命中一次得3分;命中乙靶的概率為,命中一次得2分,若沒有命中則得0分,用隨機(jī)變量表示該射手一次測試?yán)塾嫷梅,如?img src="http://thumb.1010pic.com/pic6/res/GZSX/web/STSource/2015071506043039879641/SYS201507150604358677834590_ST/SYS201507150604358677834590_ST.003.png">的值不低于3分就認(rèn)為通過測試,立即停止射擊;否則繼續(xù)射擊,但一次測試最多打靶3次,每次射擊的結(jié)果相互獨(dú)立。

(1)如果該射手選擇方案1,求其測試結(jié)束后所得分的分布列和數(shù)學(xué)期望E;

(2)該射手選擇哪種方案通過測試的可能性大?請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省泰州市高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

函數(shù) 的最小正周期為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省泰州市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

是兩個相交平面,則在下列命題中,真命題的序號為 .(寫出所有真命題的序號)

①若直線,則在平面內(nèi),一定不存在與直線平行的直線.

②若直線,則在平面內(nèi),一定存在無數(shù)條直線與直線垂直.

③若直線,則在平面內(nèi),不一定存在與直線垂直的直線.

④若直線,則在平面內(nèi),一定存在與直線垂直的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省泰州市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

函數(shù)的定義域為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省蘇州市高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知為正實數(shù),且,則的最小值為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省蘇州市高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

以拋物線的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為中心,離心率為2的雙曲線標(biāo)準(zhǔn)方程為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省常州市高三上學(xué)期期末調(diào)研測試文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù),則函數(shù)的值域為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年貴州省貴陽市高三上學(xué)期期末監(jiān)測考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題12分)據(jù)報道,全國很多省市將英語考試作為高考改革的重點(diǎn),一時間“英語考試該如何改革”引起廣泛關(guān)注,為了解某地區(qū)學(xué)生和包括老師、家長在內(nèi)的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人進(jìn)行調(diào)查,就“是否取消英語聽力”問題進(jìn)行了問卷調(diào)查統(tǒng)計,結(jié)果如下表:

態(tài)度

調(diào)查人群

應(yīng)該取消

應(yīng)該保留

無所謂

在校學(xué)生

2100人

120人

社會人士

600人

已知在全體樣本中隨機(jī)抽取人,抽到持“應(yīng)該保留”態(tài)度的人的概率為

(1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取人進(jìn)行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?

(2)已知,,若所選擇的在校學(xué)生的人數(shù)低于被調(diào)查人群總數(shù)的80%,則認(rèn)為本次調(diào)查“失效”,求本次調(diào)查“失效”的概率.

查看答案和解析>>

同步練習(xí)冊答案