【題目】△ABC中,sin(A﹣B)=sinC﹣sinB,D是邊BC的一個(gè)三等分點(diǎn)(靠近點(diǎn)B),記 ,則當(dāng)λ取最大值時(shí),tan∠ACD= .
【答案】2+
【解析】解:∵sin(A﹣B)=sinC﹣sinB, ∴sinAcosB﹣cosAsinB=sinC﹣sinB=sinAcosB+cosAsinB﹣sinB,
∴sinB=2cosAsinB,∵sinB≠0,
∴cosA= ,由A∈(0,π),可得:A= ,
在△ADB中,由正弦定理可將 ,變形為則 ,
∵ =
∴ 即a2λ2=4c2+b2+2bc…①
在△ACB中,由余弦定理得:a2=b2+c2﹣bc…②
由①②得
令 , ,f′(t)= ,令f′(t)=0,得t= ,
即 時(shí),λ最大.
結(jié)合②可得b= ,a= c
在△ACB中,由正弦定理得 ,tanC=2+
所以答案是:2+ .
【考點(diǎn)精析】通過靈活運(yùn)用正弦定理的定義,掌握正弦定理:即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線C1 (t為參數(shù)),C2 (θ為參數(shù)),
(Ⅰ)當(dāng)α= 時(shí),求C1與C2的交點(diǎn)坐標(biāo);
(Ⅱ)過坐標(biāo)原點(diǎn)O做C1的垂線,垂足為A,P為OA中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)的軌跡的參數(shù)方程,并指出它是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3﹣x2﹣x+a , 若函數(shù)f(x)過點(diǎn)A(1,0),求函數(shù)在區(qū)間[﹣1,3]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機(jī)構(gòu)用簡單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如表.
非一線 | 一線 | 總計(jì) | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
總計(jì) | 58 | 42 | 100 |
附表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
由K2= 算得,K2= ≈9.616參照附表,得到的正確結(jié)論是( )
A.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別有關(guān)”
B.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別無關(guān)”
C.有99%以上的把握認(rèn)為“生育意愿與城市級別有關(guān)”
D.有99%以上的把握認(rèn)為“生育意愿與城市級別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動.
(1)根據(jù)以上數(shù)據(jù)建立一個(gè) 列聯(lián)表;
(2)判斷性別與休閑方式是否有關(guān)系.
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( )
A.命題“若 ,則 ”的逆否命題為:“若 ,則 ”
B.“ ”是“ ”的充分不必要條件
C.若 且 為假命題,則 、 均為假命題
D.命題 :“ ,使得 ”,則 :“ ,均有 ”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有兩個(gè)命題, :關(guān)于 的不等式 ( ,且 )的解集是 ; :函數(shù) 的定義域?yàn)? .如果 為真命題, 為假命題,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線 (a>0,b>0)的左焦點(diǎn)為F1 , 左頂點(diǎn)為A,過F1作x軸的垂線交雙曲線于P、Q兩點(diǎn),過P作PM垂直QA于M,過Q作QN垂直PA于N,設(shè)PM與QN的交點(diǎn)為B,若B到直線PQ的距離大于a+ ,則該雙曲線的離心率取值范圍是( )
A.(1﹣ )
B.( ,+∞)
C.(1,2 )
D.(2 ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(選修4﹣4:坐標(biāo)系與參數(shù)方程)
已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com